EMC+SIPI 2022 PLANNED TECHNICAL PAPERS

TP-TU-AM-TC11 Nanotechnology and Advanced Materials

High Permittivity Anisotropic 3D Printed Material
Aaron Harmon, Victor Khilkevich, Kristen M. Donnell
Missouri University of Science and Technology, USA

Abstract: In this work, the diagonal elements of the permittivity matrix for dielectric samples, 3D printed with a carbon fiber-loaded material (XT-CF20), are measured for frequencies within the range of 1 MHz to 18 GHz. These permittivity measurements demonstrated a strong anisotropy, indicating that the electromagnetic properties of the CF20 material depend on the infill method used to print. The importance of understanding the anisotropy for microwave device design is demonstrated via a dielectric-loaded cavity resonator application.

Graphene-Based Electromagnetic Absorbing Textiles for 5G Frequency Bands
A.G. D’Aloia, H.C. Bidsorkhi, A. Tamburrano, M.S. Sarto
Sapienza University of Rome, Italy

Abstract: The feasibility of graphene Based absorbing textiles for electromagnetic absorption at 5G frequency bands is investigated. With this aim, a novel manufacturing method for the production of polyvinylidene fluoride (PVDF) coatings filled with graphene nanoplatelets is investigated. The produced samples are morphologically characterized and the electrical and electromagnetic properties are assessed. In particular, the effective complex dielectric permittivity is measured in the Ku-band and the results are used to predict by simulations electromagnetic properties of the graphene Based coatings for frequencies up to 40 GHz. Finally, the radar absorption properties are measured for frequencies up to 40 GHz.

TP-TU-AM-TC12 EMC for Emerging Wireless Technologies

Passive Intermodulation under Different Spring Contact Conditions
Shengxuan Xia¹, Emmanuel Olugbade¹, Yuchu He², Yansheng Wang², Hanfeng Wang², Krishna Rao², Marco Poort², Haicheng Zhou², Warren Lee², Nicholas McDonnell², Jonghyun Park¹, Chulsoon Hwang¹
¹Missouri University of Science and Technology, USA; ²Google LLC, USA

Abstract: Modularized designs have been widely used in today’s consumer electronic devices and flexible RF springs are used for electrical connections between the modules. In the meantime, aluminum alloy material becomes a common chassis option. It is well known that the oxidized chassis surface introduces a certain level of nonlinearity when contacted by the springs, as known as passive intermodulation (PIM). PIM is one of the well-known root causes of the RF desensitization (desense). This paper is focused on investigating the relationship between PIM and contact conditions of the springs, especially contact area. The PIM level behavior is explained mathematically by the regrowth rate and the RF power distributions on the contacts. Full-wave simulations and mechanical simulations were conducted to further support the hypothesis.
Practical Fixture Design for Passive Intermodulation Tests for Flexible Metallic Contacts
Shengxuan Xia¹, Yuchu He², Yansheng Wang², Hanfeng Wang², George Mankaruse², Danny Chan², Haicheng Zhou², Warren Lee², Nicholas McDonnell², Chulsoon Hwang¹
¹Missouri University of Science and Technology, USA; ²Google LLC, USA

Abstract: Passive intermodulation (PIM) commonly exists in non-ideal metallic contacts. Since PIM typically represents an extremely low level of nonlinearity, it has not drawn enough attention over the years except for extremely high-power applications such as base stations. However, in recent years, the study on PIM has become essential in universally used consumer electronics design because of the higher requirement on the radio frequency (RF) sensitivity of wireless communications. The metal contacts caused PIM can create the sideband spectrum to interfere with the receiving band in the frequency divide duplex (FDD) mode. Therefore, the study on PIM for the frequently used flexible metallic components is important in the industry. The PIM characterizations for the flexible components at least demand the compression variability and the capability to inject high-power signals while monitoring the sideband spectrum. It is preferred to have the access to measuring more relevant quantities. This paper aims to summarize the practical experience in designing a high-dynamic range and multi-purpose applicable test setup for characterizing PIM in the flexible components. Capabilities to precisely measure/control PIM, gap variability, tilted angle variability, and DC resistance (DCR) are presented with measurement examples.

Clock Duty Cycle Tuning for Desense Mitigation in Modulation – Involved Cases
Shengxuan Xia, Jun Fan, Chulsoon Hwang
Missouri University of Science and Technology, USA

Abstract: Nowadays consumers’ electronic devices are highly integrated, and modules and integrated circuits (ICs) are usually placed close to each other due to the compact size. The modules and ICs may interfere with the radio frequency (RF) antennas and cause desense issues. In recent years, desense caused by direct coupling from the noise sources to the victim RF antennas has been well studied. However, more complicated mechanisms such as modulations between transmitting signals and low-frequency clock or data signals can also result in desense problems, especially in frequency divide duplex (FDD) applications. Typical solutions to desense problems will focus on suppressing the noise sources and/or the coupling paths, and little studies have shown the feasibility that desense in FDD applications can also be mitigated by engineering the spectral power distribution over the frequency range. This paper provides a comprehensive study on how to mitigate desense with the change in the spectrum distribution by tuning the duty cycle of the interfering clock. Measurements conducted on a real cellphone showed a 10 dB suppression of desense for certain TX bandwidth condition.

SOC Level mitigations of RFI to Wi-Fi Bands from GDDR6 Clocks
Siva Krishna Singamsetty, Suresh Krishnasamy, Kinger Cai
Intel Technology India Pvt Ltd, India

Abstract: In modern electronics, RFI (Radio Frequency Interference) caused to the WI-FI bands is a major concern because of the degradation in the Wi-Fi throughput performance. In this paper, the RFI caused to the WI-FI 5G band from GDDR6 Clock harmonics is illustrated with an actual design case. At the system level, the conventional RFI mitigation solutions include a metal case EMI Shielding. With the expansion of WI-FI bands, the conventional EMI shields in metal cases are obsoleting at the 5G frequencies and above. Therefore, the SOC level mitigations such as transition time control and duty cycle correction methods are analyzed to reduce the RFI at the source itself, which helps throughput performance in Wi-Fi bands.
A Practical Simulation Flow for Singing Capacitor based Acoustic Noise Analysis
Xin Yan1, Songping Wu2, Mingfeng Xue2, Chi Kin Benjamin Leung2, Daryl Beetner1, Jianmin Zhang2
1Missouri University of Science and Technology, USA; 2Google LLC, USA

Abstract: Multilayer ceramic capacitors (MLCCs) are widely used in modern electronics. Due to the piezoelectric effect of the ceramic material, however, MLCCs subjected to electrical noise may vibrate and generate acoustic noise, as ‘singing’. Acoustic noise can be annoying for users, especially within mobile devices, so it becomes important to perform acoustic noise analysis before a product is released. In this paper, a practical simulation flow for singing capacitor based acoustic noise is presented. The simulation flow and analysis method are developed on Ansys Sherlock and Mechanical. In Ansys Sherlock, local library and Approved Vendor List (AVL) files were used to build the model efficiently. After the PCB and all parts were set correctly, the model was imported to Ansys Mechanical for further modal analysis and harmonic analysis. Using the proposed simulation flow the simulation model could be easily created, and the inherent vibration properties and frequency response of the structure could be estimated.

Investigation of PCB Generated Magnetic Field as an Acoustic Noise Source on Wearable Devices
Yuchu He, Neil Harris, Hanfeng Wang
Google LLC, USA

Abstract: Wireless earbud is the most sold wearable type in the consumer electronics market. As wireless earbuds offer more functionalities, the increased complexity and integration may introduce undesirable coupling between different components. One of the undesirable coupling is the magnetic coupling between the earbud main logic board (MLB) and the speaker coil. The low frequency current ripples on the MLB power rail may induce current with acoustic frequency components on the speaker coil and lead to unpleasant audible noise. In this paper, the magnetic field generated by an earbud MLB is investigated through simulation with 3D FEM solvers and measurement with a low frequency H-field probe.

Simulation and Analysis to Minimize Audio Noise in System Design
Mingfeng Xue, Yao Ding, Benjamin Leung, Gemin Li, Jianmin Zhang
Google LLC, USA

Abstract: This paper presents a flow of modeling and simulating acoustic noise in a typical earbud design. The noise source investigated is the multi-layer ceramic capacitor, known as singing capacitor, which is widely used on the power delivery network of electronic circuit boards. Good correlation between simulated and measured audio noise spectra is achieved. The developed modeling methodology helps to understand the key factors impacting on audio noise, and to provide a way to identify potential acoustic noise risk at the early design stage. Possible mitigation solutions are also investigated to demonstrate the model flexibility in what-if analysis.

Multiphysics Analysis of Induced Acoustic Noise in an Earbud Speaker
Pavani Gottipati1, Krishna Mellachervu1, Mingfeng Xue2, Jingchen Liang1, Benjamin Leung2, Jianmin Zhang2
1Ansys, Inc., USA; 2Google LLC, USA

Abstract: Speakers can be sensitive to nearby electronics. Electrical traces carrying high frequency electrical currents can induce electromagnetic current in the voice coil of a speaker. The induced current can cause vibration of the voice coil thereby resulting in audible acoustic noise. This paper provides a Multiphysics simulation workflow to compute the force on voice coil due to the induced electromagnetic field from an aggressor coil placed in the vicinity of the earbud module.
The Prospects of Replacing Chattering Relay Susceptibility Test with MIL-STD-461G CS115
John G. Kraemer
Collins Aerospace, USA

Abstract: This paper examines the possibility of replacing the DO-160 chattering relay susceptibility test with MIL-STD-461G CS115. The background of both tests is presented along with the results of a comprehensive test campaign involving 12 different aerospace representative cables. Conclusions and recommendations centered on Using CS115 as a replacement for the chattering relay test are presented.

Performances of Multilayer Composite Materials for Broadband Shielding
P. Clerico¹,², L. Pichon¹,², O. Dubrunfaut¹,², X. Mininger¹,², C. Gannouni¹,², Y. Liu¹, D. He¹, J. Bai¹, L. Prévond¹
¹Paris-Saclay University, France; ²Sorbonne Université, France

Abstract: The paper investigates the shielding effectiveness (SE) of multilayers composite materials over a wide frequency band. First, several nanocomposite materials are characterized, and behavior laws are deduced up to several GHz. Then different arrangements involving conductive layers and composite layers are compared. Finally, a three-layer arrangement combining a magnetic material and a conductive sheet is shown to provide a high shielding effectiveness from DC to 10 GHz.

3D Printed Multilayer Microwave Absorber
Wei Zhang, Rui Mi, Victor Khilkevich
Missouri University of Science and Technology, USA

Abstract: This paper explores the possibility to create 3D printed multilayer electromagnetic absorbers. The proposed design is similar to the thin-film filters used in optics and consists of interleaving high and low permittivity layers. Based on transmission line theory, the multilayer absorber can be designed in a circuit simulator. Analytical equations, circuit simulations, and measurements are used to analyze and validate the designed absorber. Multilayer absorbers Based on 3D printed material can be an inexpensive option for engineering usage with great design flexibility and fast fabrication.

A Low EMI Characteristic of LPDDR5 SDRAM with Edge-Placed PADs and Short Re-Distribution Lines
Jun-Bae Kim¹, Chang Ki Kwon¹, Sangwook Park¹, Yoo-Chang Sung¹, Jeong Don Ihm¹, Wooil Kim¹, Jungho Jin¹, Sangjoon Hwang¹, Changsik Yoo¹, Jung-Hwan Choi¹, Jingook Kim²
¹Samsung Electronics Co., Ltd., Korea; ²Ulsan National Institute of Science and Technology, Korea

Abstract: For mobile DRAM, low EMI (Electro-Magnetic Interference) chip architecture is highly required. So, mobile DRAM’s EMI characteristic Using center-placed pads and edge- placed pads has been investigated. Our near-field scan measurement results show that the peak H-field magnitude of LPDDR5 Using edge-placed pads is lower by 11.5 dB than that of the other one Using center-placed pads. Furthermore, when comparing our measurement results to our simulation results showing that the power plane resonance of PoP (Package-on-Package) affects low frequency EMI radiation significantly, we have also noticed reasonable agreement on the peak H-field magnitude trend.
Capacitor Model Details Key to Measurement Correlation
Steve Sandler
Picotest, USA

Abstract: Power integrity and system engineers have the task of designing, optimizing, and assessing the power distribution network impedance. EM simulators are used to model these networks to optimize the decoupling capacitors and to perform worst case assessments. Using simulated dynamic chip currents and applying worst case tolerances. Once the hardware is constructed, measurements are performed for correlation, so that the model can be validated. Many engineers struggle to achieve reasonable part model and circuit model correlation. This paper explores two prevalent reasons for this shortfall and provides a methodology for performing accurate capacitor measurements to achieve these correlations.

A Deep Neural Network Modeling Methodology for Extraction of RLGC Parameters in μ-Wave and mm-Wave Transmission Lines
Stephen Newberry, Ata Zadehgol
University of Idaho, USA

Abstract: Transmission line geometry is one of the most critical aspects of high-speed digital and radio frequency (RF) printed circuit board (PCB) design. While relatively simple equation-based methods exist to estimate transmission line parameters such as characteristic impedance, they do not hold accuracy beyond certain structural limitations such as track width to dielectric thickness ratios. Electromagnetic field solvers have become far more common in recent times and can deliver exceptional accuracy with relatively low computational cost. This paper describes a proof-of-concept neural net which utilizes five input parameters of an uncoated microstrip transmission line and is able to output the per-unit-length equivalent resistance, inductance, conductance, and capacitance (RLGC) parameters. The goal of a deep-learning Based transmission line tool is to enable accurate microstrip and stripline PCB trace design with computation speeds which allow the engineer to compute hundreds or thousands of iterations in a short period of time with commodity hardware. The final model calculates characteristic impedance with less than ±1.33 Ω error for 100,000 swept samples when the samples are within the middle 90% range of the training data and with a computation speed increase of 14.5 times faster than the benchmark field solver.

Extraction of Stripline Surface Roughness Using Cross-Section Information and S-Parameter Measurements
Ze Sun1, Jian Liu2, Xiaoyan Xiong2, Victor Khilkevich1, DongHyun Kim1, Daryl Beetner1
1Missouri University of Science and Technology, USA; 2Cadence Design Systems Inc., USA

Abstract: To characterize additional conductor loss introduced by conductor surface roughness, various models have been proposed to describe the relationship between foil roughness levels and surface roughness correction factor. However, all these empirical or physical models require a PCB sample to be manufactured and analyzed in advance. The procedure requires dissecting the PCB and is time- and labor-consuming. To avoid such a process, a new surface roughness extraction process is proposed here. Only the measured S-parameter and nominal cross-sectional information of the board are needed to extract the roughness level of conductor foils. Besides, this method can also deal with boards having non-equal roughness on different conductor surfaces, which is common in the manufactured printed circuit boards (PCB). The roughness level on each surface can be extracted separately to accurately model their contribution to the total conductor loss. The presented method is validated by both simulation and measurement. A good correlation is achieved between extracted roughness level and the measured value from the microscope.
Dielectric Loss Tangent Extraction Using Two Single-Ended Striplines of Different Width
Jiangshuai Li¹, Yuanzhuo Liu¹, Liang Liu¹, Shengxuan Xia¹, Scott Hinaga², Victor Khilkevich¹
¹Missouri University of Science and Technology, USA; ²Cisco Systems, Inc., USA

Abstract: Frequency-dependent electrical properties of dielectric materials are one of the most important factors for high-speed signal integrity design. Recently a method of accurately measuring the dielectric loss tangent (tan δ) of differential lines was proposed. By taking into account the ratio between the differential and common mode per-unit-length resistances, the surface roughness contribution to the total loss is eliminated and dielectric parameters can be determined. In this article, a similar method is applied to a combination of two single-ended lines. To evaluate the accuracy of the extraction, the impact of the de-embedding errors was investigated, which allows to optimize the test PCB design. The extraction method was validated in measurement Using a PCB with several two-width pairs of striplines. The extracted loss tangent of several optimal two width pairs of single-ended lines is validated by the SPDR measurements.

POSTER SESSIONS

Impact of Antenna Tilt on Measurements below 1 GHz in Anechoic Chamber
Krzysztof Sieczkarek, Adam Maćkowiak
Poznań Institute of Technology, Poland

Abstract: Article shows how the antenna tilt reveals the true nature of radiated emission phenomenon up to 1 GHz

PCB Parameter Extraction for Signal Integrity Modeling
Kaisheng Hu
Ciena, Canada

Abstract: PCB material parameters (Dk, Df and surface roughness) are key factors for signal integrity analysis. By Using the parameters within vendor’s datasheets directly, simulation result always have big offset compared with lab measurement result due to different production variations. To improve the accuracy of simulation and guarantee a design to be successful for the first-time, one test coupon board is designed, fabricated, and measured. PCB laminate parameters are extracted Based on lab measurements instead of datasheet values. With the extracted parameters and same stack up under same factory production process, high-speed channel simulation can predict transmission line & RF transition’s performance on real PCB products with reliable simulation accuracy up to 50 GHz.

Quasi-Uniform Volume of Electromagnetic Field in Anechoic Chamber
Krzysztof Sieczkarek, Adam Maćkowiak, Radosław Szczepański
Poznań Institute of Technology, Poland

Abstract: This article shows an alternative way of field uniformity settings for the needs of the quick, pre-compliance tests. Uniform field is created in the volume to achieve normatively required alignment of the cables to the uniform field area during EUT rotation with no rearrangements of the cabling.
Research and Application of 45G Antenna Weight Optimization based on Heuristic and Reinforcement Learning
Chenxi Zhang, Feng Gao, Wentao Zhu, Yuan Wu
China Mobile Group Design Institute Co., Ltd., China

Abstract: Currently, the main optimization strategies for 45G network antenna weight are to use manual or simple automated method to adjust weight parameters, however, the above two traditional ways have problems such as high maintenance cost, low optimization efficiency and large errors. Therefore, for the purpose of network production efficiency improvement, optimized maintenance cost reduction and achieving the goals of accurate, rapid, efficient and intelligent optimization of antenna weight, the paper focused on 45G massive multiple-input multiple-output antenna weight self-optimization methods Based on artificial intelligence technology and massive multiple-input multiple-output array antenna technology. Meanwhile, network data were analyzed in depth and put forward the theoretical research idea by applying reinforcement learning and heuristic learning as the core strategy to drive the weight self-optimization, which is helpful to provide references for the promotion of self-optimization adjustment technology and the evolution of digital intelligence in the antenna field.

Rapid Calculation Method of Three-Dimensional Communication Range in HF Broadband Communication System
Kensei Kuwahara, Yuki Fukumoto, Tohlu Matsushima, Toshiyuki Wakisaka
Kyushu Institute of Technology, Japan

Abstract: RF interference is a vital issue to construct the communication network Using many Internet of Things (IoT) devices. This study proposes the rapid estimation three-dimensional communication range for the wireless communication system Using magnetic field coupling of air-core coils in HF broadband communication. Firstly, an equivalent circuit for rapid calculation of transmission coefficient between transmission coils is shown. The theoretical equation for accurate calculation of the inductance of a straight conductor is derived, followed by the calculation of the total inductance of coils by combining inductances of straight conductors. Then, the calculation speed and accuracy of the proposed method are verified by the simulation and the measurement Using the coil implemented on a printed circuit board (PCB). As a result, the proposed method can calculate the transmission coefficient in a few milliseconds, and the error is approximately 1 dB compared to the measurement results. Additionally, it plotted the entire communication range in 3 seconds for the case study of a 2-turns coil.

Enabling High-Speed DDR5 Memory Technology in a Low-Cost 4-Layer Motherboard Stackup
Alvaro Camacho-Mora, Fernando Rodriguez, Ranjul Balakrishnan
Intel Corporation, Costa Rica

Abstract: In the cost-sensitive Client Desktop domain, memory platform design and performance on a constrained low-cost 4-layer (4L) type 3 Stackup continue to be major challenges. While traditional memory technologies like DDR4 with lower data rates have been successfully productized, addition of new memory technologies such as DDR5 poses newer risks to enabling higher performance. This paper discusses an alternative solution while adhering to the same PCB 4L stack-up for motherboard (MB), with Dual-POOL (Planes On Outer Layers) routing that allows faster DDR frequencies when compared to legacy routed platforms.
Simultaneous Design of Circular Pad and Double Side Compensation Network for Dynamic Wireless Power Transfer
Ebrahim Nasr Esfahani, Indranil Bhattacharya, Webster Adepoju
Tennessee Technological University, USA

Abstract: The wide-scale adoption of electric vehicles may have the capability of efficient and fast charging while the car is in motion or dynamic wireless power transfer (DWPT) technology. Magnetic pad and compensation topology are two major factors affecting the amount of power transfer and efficiency of dynamic wireless power transfer. This article presents an iterative approach to designing magnetic pads and optimization of a double-side LLC compensation network. The optimization of coil pad was performed using a parametric sweep. Finite-element modeling in ANSYS Maxwell 3D was developed to achieve a desired value of self and mutual inductance of the coils. The effect of coil misalignment was also analyzed. A case study of a 3-kW dynamic wireless power transfer system was simulated under different loads using MATLAB/Simulink to verify the features of the proposed system. The system showed DC-DC efficiency as high as 97.80% with constant voltage output.

Mitigation of Spectrum Analyzer Emissions in a Portable E-Field Measurement System
Ronald D. Jacksha
CDC NIOSH, USA

Abstract: Development of a portable system to measure broadband electromagnetic emissions in underground mines poses many challenges, the most significant being mitigating the contribution of spectrum analyzer electric field emissions to the composite electromagnetic environment of a survey area. This paper presents a novel method to mitigate a spectrum analyzer’s electric field emissions.

Application of Surface Roughness to Improve Accuracy of Harness Attenuation Estimation
Ryo Watanabe, Miyuki Mizoguchi, Yoichiro Suzuki
SOKEN, INC., Japan

Abstract: As a method for shortening vehicle development times, Model Based Development (MBD) is attracting attention. In automotive communications as well, MBD analyzes the ability to establish Electronic Control Unit (ECU) - harness - ECU communications and reflects this in product design. With the increasing speed of communications in recent years, precisely estimating the amount of attenuation in harnesses is becoming more necessary and how to reduce error in high frequency bands has become an issue. This paper proposes a technique for measuring surface roughness with laser microscopes and modeling it in order to improve the precision of harness models.

In-Situ Qualification of Semi-Rigid and Flexible RF Gaskets
Susanne Bauer1, Christian Türk2, Klaus Roppert1
1Graz University of Technology, Austria; 2Ministry of Defence of Austria, Austria

Abstract: This work presents a possibility of in-situ characterization of RF gaskets based on the occurrence of nonlinear transitions resulting from aging and corrosion of used gaskets over time due to, e.g., thermal stress or moisture.
High-Speed Memory Signal Integrity Compliance Using the CNN
Hyunje Bang¹, Junesang Lee¹, Daiho Ham¹, Sungho Bae²
¹Altair Engineering Inc., USA; ²Kyung Hee University, Korea

Abstract: This paper proposes a methodology to evaluate the signal integrity of PCB’s signal waveforms using deep learning. The presented method includes the convolutional neural network (CNN) model which can classify automatically the result utilizing images of the high-speed signal waveform measured in the memory circuit. The conventional method is necessary to understand the standard and make an effort to define it to make sure the resulting waveform is evaluated, however, this method can judge pass/fail only with the images of the signal, so it has the advantage to reduce the time (20%) of data processing. In this paper, high-speed signal waveform data of the LPDDR bus were analyzed using the Altair PollEx simulation tool, and the resulting waveform was processed in Python language for the training. The result showed that compliant waveforms satisfying the signal integrity criteria were found within Epoch4 with high accuracy, which validates the effectiveness of the proposed methodology.

Passive Cross Talk Cancellation (XTC) Techniques to Enable System Miniaturization
Stephen Christianson¹, John Drew¹, Ranjul Balakrishnan², Rebecca Castro Artavia³, Esteban Torres Pineda³
¹Intel Corporation, USA; ²Intel Corporation, India; ³Intel Corporation, Costa Rica

Abstract: The accelerating demands of end-users and competing requirements of higher-bandwidth, smaller form-factor memory bus solutions require nonlinear design implementation to continue meeting the requirements of silicon architecture. Passive crosstalk and ISI compensation techniques provide a compelling means for enabling next-generation memory solutions as they are free or low-cost, no- or low-power, and consume minimal real estate. This document details several of the most effective techniques that can be applied on high speed memory buses, each of which yields performance improvements of one or more speed bins and can be placed modularly alongside modern equalization and active crosstalk cancellation schemes.

A Full-Wave FDTD-Circuit Solver for Transient Analysis of Interconnects and Circuit Components
Xuezhe Tian, Yongjun Liu, Yingxin Sun, Mingjin Zhang, Jian Liu
Cadence Design Systems Inc., USA

Abstract: A full-wave 3D FDTD-circuit hybrid method is proposed and applied for transient analysis of systems with interconnects and circuit components. The co-simulation of field and circuit solvers is fulfilled through the internal ports defined between the circuit reference patch and its field connections. The hybrid solver retains the 3D FDTD modeling of distributed interconnects and incorporates lumped circuit physics including active gains and nonlinearity. The behavioral modeling of circuits described by the IBIS (I/O Buffer Information Specification) is also supported in the proposed procedure.
Improving Spectrum Sharing Interference Criteria: A Survey of a Critical Need for Measurements
Andrew W. Clegg, Sarah A. Seguin, Charles Baylis, Austin Egbert, Robert J. Marks II
Baylor University, USA

Abstract: As radio spectrum becomes more congested and more valuable, an increasing number of potential conflicts is occurring between or among disparate systems and services. Such potential conflicts can be related to systems sharing the same band or even the same channel. Because of unwanted emissions (which include out-of-band emissions and spurious emissions), potential conflicts can arise in immediately adjacent bands, and even bands that are far removed from the operating frequencies of the potentially interfering system. We refer to these issues as potential conflicts, because whether a conflict does or does not exist in reality is often far from clear. Such claims are typically Based on paper studies that combine interference criteria for a particular service, propagation models, deployment models, usage assumptions, and other factors. The inputs, assumptions, and even the applicability of any or all of these specific factors are debatable, with the potential interferer relying on liberal interpretations, and the potential victim assuming conservative parameters. In the end, often the potential interfering operator concludes with certainty that no harmful interference will occur, and the potential victim operator concludes with certainty that harmful interference will occur. The regulator, which is often understaffed with appropriate resources to perform its own detailed technical analyses, must make a judgment call, which is usually Based on a combination of policy goals, politics, and the “loudest voice.” Sometimes that judgment call results in overly restrictive requirements that causes inefficient spectrum use, or policies that may in fact lead to harmful interference in actual deployments. In this paper, we make an argument that the current situation could be significantly improved if one or more independent third-party “co-existence labs” were established that can help provide neutral input to regulators on the compatibility between various systems and services in the radio spectrum.

Spectrum Sharing Brokers for Active and Passive Devices
Sarah A. Seguin, Adam Goad, Charles Baylis, Robert J. Marks II
Baylor University, USA

Abstract: Acute spectral crowding has necessitated the launch of multiple efforts centered on both the better use of electromagnetic spectrum and expanding spectrum use into increasingly higher frequencies. With the imminent proliferation of Fifth Generation (5G) systems in the 24 GHz band, these devices can present interference from out-of-band emissions to space-based weather radiometers conducting passive measurements of water vapor thermal emissions in the neighboring 23.6 – 24 GHz band. There is a critical need to accommodate both passive devices and active device transmitters, such as 5G systems, and allow for these active systems to adjust their transmissions to avoid critical weather radiometer systems in the nearby band. A survey of brokering systems is discussed and how they have the potential to protect crucial passive devices from unwanted interference by accounting for all spectrum users that could potentially interfere.

Understanding Spectrum Sharing and Coexistence: Field to Lab Methodology and Case Study
Darren McCarthy
Rohde & Schwarz USA, Inc., USA

Abstract: The FCC and NTIA continue to refarm spectrum for commercial use with the potential for new problems to arise without proper impact assessment. Most recently, the impact of 5G C-Band systems on radio altimeters used during instrument landing at airports has come into focus. This paper looks at a method of assessing Coexistence and Spectrum Sharing and also suggests closed loop methods to include the functional performance of the radar in the presence of communications signals.
TP-TU-PM-TC4 Electromagnetic Interference – II

Equivalent Circuit for I/O Electrical Fast Transient Testing
Steven G. Gaskill, Pujitha Davuluri
Intel Corporation, USA

Abstract: The focus of this paper is a linear Thevenin-equivalent model with time-varying sources to capture the voltage waveforms induced in an I/O cable during Electrical Fast Transient (EFT) testing. The model enables accurate prediction when the cable is connected to any linear/nonlinear circuitry --- such as TVS diodes, common mode chokes, and ESD/EFT protection circuitry. Due to the extremely low coupling through a well-shielded cable, this work utilizes direct measurements with a high Common Mode Rejection Ratio (CMRR) optically-isolated oscilloscope probe. A unique linear least squares technique to fit these measurements to an HSPICE model was developed. The model was employed to investigate the effectiveness of common platform solutions for EFT issue and show the development of an example silicon-level specification for EFT.

Predicting Radiated Emissions from a Complex Transportation System Wiring Harness
Fuwei Ma1, Ruijie He1, Sameer Walunj1, Tamar Makharashvili1, Chulsoon Hwang1, Daryl Beetner1, Brian Booth2, Kerry Martin2
1Missouri University of Science and Technology, USA; 2Deere & Company, USA

Abstract: Low frequency radiated emissions problems are often caused by common mode currents flowing on wiring harnesses. The ability to predict radiated emissions problems early in the design process can save both time and money and result in a better product. Methods have previously been reported for rapidly characterizing common-mode sources driving a harness and then Using these equivalent sources to predict radiated emissions. These methods are extended in the following paper to predict radiated emissions from a complex 32-wire harness bundle connected to an engine control unit. Rapid experimental characterization of the common mode sources is enabled Using an equivalent cable bundle approximation of the original harness, where wires with roughly equivalent source and load impedances are lumped together and treated as a single equivalent wire. Sources driving the equivalent bundle were found Using a specialized measurement fixture. Only a few measurements are required, even if there are many wires associated with the source and they originate at different ports on the component. Full-wave models of the equivalent harness were built and along with the equivalent source were used to predict radiated emissions. This model was able to predict radiated emissions from 20-300 MHz with reasonable accuracy, with peak emissions typically predicted within about 6 dB of measurements, when Using multiple different harness lengths and routings.

A Fast Cascading Method for Predicting the Couplings from External Plane Wave to PCBs
Shengxuan Xia1, James Hunter1, Aaron Harmon1, Mohamed Z.M. Hamdalla2, Ahmed M. Hassan2, Chulsoon Hwang1, Victor Khilkevich1, Daryl G. Beetner1
1Missouri University of Science and Technology, USA; 2University of Missouri Kansas City, USA

Abstract: The radio frequency (RF) coupling to electronic devices impacts their EMC performance. The functionalities of a working electronic device may be disrupted when the electromagnetic (EM) coupling reaches a certain level. Studies of the EM coupling to printed circuit boards (PCBs) are therefore essential for RF susceptibility and EMC purposes. For decades, researchers focused on the analytical modeling of EM coupling to transmission lines. However, when it comes to more realistic PCBs the analysis usually still relies heavily on full-wave simulations because of the complexity of the structures and the lack of analytical solutions. Using a traditional full-wave modeling approach, however, could take hours to investigate the EM coupling from the external plane wave to the structure for one incident angle of arrival and polarization. In this paper, we present a methodology Using reciprocity that allows for rapid estimation of the voltage induced in the terminations for multiple incident angles of the incoming plane wave and load values Based on just one full-wave simulation. This reciprocity-based method is combined with a segmentation technique to enable the capability of studying the coupling to more realistic PCBs. For the cases studied here, estimates could be found in minutes Using this approach rather than hours Using a full-wave simulation. Estimates were within 2-3 dB of estimates Using full-wave simulations for a simple trace structure. Accuracy was not as good for individual angles of arrival of an incident RF wave to a complicated structure including two integrated circuit (IC) packages connected by a trace, but statistical estimates of coupling were within 2-3 dB.
Features of the Search for a Circular Route in Conditions of Interference
Aleksandr Kornilov
Moscow Aviation Institute (National Research University), Russia

Abstract: Route planning tasks are often performed on various networks. The path length criterion is one of the most important. Including for circular routes. Aspects of interference interpretation when modeling data transmission networks are considered. A simplified interpretation of the interference is used. Ant colony algorithms are used to obtain solutions. Several types of impact are considered from the worst case and the corresponding critical factor, to intermediate values of the factor. The impacts on a part of the path are also considered. Numerical values of routes and their relationships in graphs are determined. Conclusions are made about the high resistance of the structure of the complete graph to noise on the way.

TP-TU-PM1-TC10 Numerical Modeling and Simulation
Techniques – I

PEEC-Based On-Chip PDN Impedance Modeling Using Layered Green's Function
Chaofeng Li, Biyao Zhao, Bo Pu, Xu Wang, DongHyun Kim, Jun Fan
Missouri University of Science and Technology, USA

Abstract: This paper presents an impedance model of on-chip power distribution network (PDN), which is an efficient criterion for estimating simultaneous switching noises (SSNs) on 3-D integrated circuit (IC). The impedance of on-chip PDN, including the effect of silicon substrate, is accurately modeled Based on partial element equivalent circuit (PEEC) and layered Green’s function (LGF). The equivalent circuit model of PDN is extracted Based on the physical dimensions and electrical material characteristic of PDN at first. And then the LGF is used to consider the effect of silicon substrate for improving the accuracy of on-chip PDN impedance model. The effectiveness of proposed model has been validated by full wave simulation. The high order resonance of PDN impedance can also be accurately predicted.

Optimizing the Placement of Non-Functional Pads on Signal vias Using Multiple Reflection Analysis
Muqi Ouyang1, Kevin Cai2, Chaofeng Li3, Anna Gao2, Felen Fu3, Hannah Bian3, Bidyut Sen2, DongHyun Kim1
1Missouri University of Science and Technology, USA; 2Cisco Systems, Inc., USA; 3Cisco Systems, Inc., China

Abstract: In this study, the effects of Using non-functional pads to optimize the performance of high-speed signal vias are investigated Based on multiple reflection analysis. The non-functional pads on signal vias introduce more capacitive coupling and are possible to improve the response of the via structure if the original via has relatively larger impedance compared to the system reference impedance. The effectiveness of the non-functional pad optimization is validated through a numerical example, and the eye diagram of the via structure without and with non-functional pads are compared. The eye opening becomes 5.4 times larger after the via optimization Using non-functional pads.
A DNN-Ensemble Method for Error Reduction and Training Data Selection in DNN based Modeling
Ling Zhang¹, Da Li¹, Jiayi He², Bhyrav Mutnury³, Bo Pu², Xiao-Ding Cai⁴, Chulsoon Hwang², Jun Fan², James Drewniak², Er-Ping Li¹
¹Zhejiang University, China; ²Missouri University of Science and Technology, USA; ³Dell Inc., USA; ⁴Cisco Systems, Inc., USA

Abstract: Deep neural networks (DNNs) have been widely adopted in modeling electromagnetic compatibility (EMC) problems, but the training data acquisition is usually time-consuming through various simulators. This paper presents a powerful approach using an ensemble of DNNs to effectively reduce the training data size in DNN-based modeling problems. A batch of training data with the largest uncertainties is selected using active learning through the variance among the ensemble of DNNs. Subsequently, a greedy sampling algorithm is applied to select a data subset using diversity. Thus, the proposed method can achieve both uncertainty and diversity in data selection. By averaging the outputs of the DNN ensemble, the prediction error can be further reduced. Simple mathematical functions are used to validate the proposed method, and a high-dimensional stripline modeling problem also demonstrates the effectiveness of this DNN-ensemble approach. The proposed method is task agnostic and can be used in other surrogate modeling problems with DNNs.

Analysis of CM-Signal Suppression Effect from DM Signal by Common-Mode Choke Coil Using Chain-Parameter Matrix
Nobuo Kuwabara, Tohlu Matsushima, Yuki Fukumoto
Kyushu Institute of Technology, Japan

Abstract: Common-mode choke coil (CMC) is used in vehicles and electronic devices to improve electromagnetic compatibility (EMC), and the analysis of the CMC effect is essential to improve the design quality of EMC. In this paper, the suppression effect of CMC for the common-mode (CM) signal converted from the differential-mode (DM) signal is analyzed using a chain-parameter matrix. The chain-parameter matrix of the CMC was obtained from the SPICE model and the measured data. And then, the amount of conversion level from DM signal to CM signal was calculated using the chain-parameter matrix of the signal source, the termination, the cable, and the CMC. The CM signal level was calculated for the shielded twisted pair cable with one pair considering imbalances of the signal source, the termination, the cable, and the CMC. The calculation value was compared to the measurement value due to confirm the validity of the method, and the calculated results were in close agreement with the measurement value. The investigation results showed that we should pay attention to the CMC imbalance when the cable is well balanced. In addition, the results suggested that the CMC should be prepared at both ends of the cable to reduce the current outside the shield.

SS-TU-PM2-TC3 Critical Challenges and Solutions in Spectrum Engineering

Interference Protection Criteria for Realistic Channel Conditions
Robert Achatz, Charles Dietlein, Michael Cotton
National Telecommunications and Information Administration, USA

Abstract: This paper describes a new National Telecommunications and Information Administration (NTIA) effort focused on the development of methods to determine appropriate interference protection criteria (IPC) as a means to resolve contention around spectrum sharing proposals being considered by NTIA and Federal Communications Commission (FCC).
Estimating the Local Mean Voltage of a Radio Signal in a Mobile Channel
Robert Johnk, John J. Lemmon
Institute for Telecommunication Sciences, USA

Abstract: This paper examines the estimation of the local mean voltage of a radio signal in a Rayleigh fast-fading environment. We focus on the statistical uncertainties of local voltage averages obtained by both integrating the voltage envelope of a specified spatial interval and averaging over a set of discrete spatial samples. We derive new analytical expressions of the variances of both discrete and continuous averaging for selected spatial intervals. We also give recommendations for averaging intervals and sample spacing to achieve a ±1 dB spreading factor. We provide important new results for the variance of discrete averaging with new insight gained on separations required for uncorrelated samples. One significant finding of this work is that criteria in the published literature are incorrect and underestimate the variance. We support these findings with an experimental validation of our variance expressions Using laboratory fading simulator measurements and sample statistics.

Measuring Tropospheric Propagation in the 21st Century
Adam Hicks, John Ewan, William Kozma, Michael Cotton
National Telecommunications and Information Administration, USA

Abstract: This article is intended to motivate and describe a new tropospheric scatter modelling and measurement validation effort that is underway at the Institute for Telecommunication Sciences (ITS). Immediately after World War II, there was a flurry of research conducted to investigate the phenomenon of forward scattering through the troposphere, or troposcatter, for over-the-horizon radio links. During the early 1950s, ITS researchers carried out an extensive measurement campaign now summarized in the ITS technical report Cheyenne Mountain Tropospheric Propagation Experiments [1]. Several propagation models were developed from this effort as well as from similar follow-on measurement campaigns, such as the Irregular Terrain Model (ITM) and IF-77 (ITS-FAA air-to-ground propagation model, circa 1977). These models are Based on simplified assumptions, but they are still used in today’s spectrum policy decisions. ITS engineers are currently developing a modern measurement system that incorporates the latest RF hardware capabilities and takes advantage of the extensive information now available about our meteorological and geographical environment to improve the accuracy of these models. This paper describes the current and proposed deployments of this modern and upgraded ITS troposcatter measurement system.

Examination of 1.7 GHz Measured Propagation Loss for Free-Space/Clutter Paths in Salt Lake City
William Kozma Jr., Christopher Behm, Paul McKenna
National Telecommunications and Information Administration, USA

Abstract: In June 2018, ITS performed mobile clutter measurements in Salt Lake City, UT at 1.7 GHz. This measurement campaign was designed for path geometries with larger take-off angles by placing the transmitter in the hills of the nearby mountains. The resulting measurement dataset contains a large percentage of paths that would traditionally be considered line-of-sight (LOS), in that the terminals have an unobstructed view of each other. We present this LOS data and explore what a LOS path implies within a cluttered environment. We integrate high-resolution lidar data into our analysis showing that traditional assumptions of LOS links need further descriptors to clarify the frame of reference. Finally, we present how lidar data can be incorporated into modeling activities to support improved prediction methods and understanding of the expected clutter losses for such geometries.
Evaluation of Nonlinear ARX System Identification Technique on Modeling Crosstalk
Muhammad Imam Sudrajat1,2, Muhammad Ammar Wibisono1,3, Hermes J. Loschi1,4,5, Niek Moonen1,6, Frank Leferink1,6
1University of Twente, The Netherlands; 2Badan Riset dan Inovasi Nasional Republik Indonesia, Indonesia; 3Institut Teknologi Bandung, Indonesia; 4University of Zielona Góra, Poland; 5University of Nottingham, United Kingdom; 6Thales Nederland B.V., The Netherlands
Abstract: Estimating crosstalk appropriately is very important in the process of mitigating electromagnetic interference. This study evaluates a black-box modeling technique named nonlinear autoregressive with exogenous inputs (NARX) on crosstalk modeling application, especially crosstalk due to random pulse width modulation. The model is developed using the input and output data from the measurement as regressor inputs. For validation, the mean squared error of this model is calculated by comparing the model output with the real measurement output. For evaluation, the model performance also was compared to a Spice-based SACAMOS model. Although less flexible than the Spice model, NARX model can represent the signal on the victim cable well with a small mean squared error value.

Superposition of Transient Switching Currents for Non-Linear Devices
Alexander Matthee1, Niek Moonen1, Frank Leferink1,2
1University of Twente, The Netherlands; 2Thales Nederland B.V., The Netherlands
Abstract: Increased power electronics converters on microgrid supplies result in large inrush currents which are not appropriately limited by present-day standards, especially devices commonly switched in large clusters. The currents drawn by switching large clusters, such as LED lights, or systems dominated by power electronics converters are shown by measurement as well as simulations to have worrying trends for electromagnetic compatibility. Superposition of currents from many low power devices, especially in low inertia micro-grids, can significantly impact the stability of the supply and may cause interference or high probability of complete grid failure.

Solving the Grid Overvoltage Caused by Connected PV Systems: DSTATCOM based on MMC
Amr Madi1,2, Niek Moonen2, Waseem W. Elsayed1,2, Abduselam Beshir3, Piotr Lezynski1, Robert Smolenski1
1University of Zielona Góra, Poland; 2University of Twente, The Netherlands; 3Politecnico di Milano, Italy
Abstract: With the expansion of photovoltaic cell installation in residential units, the low voltage distribution system faces a new challenge concerning the stability of the distribution network. This problem is associated with sudden flickers – that is overvoltage followed by under voltage due to the uncontrolled connection/disconnection of the photovoltaic units. This paper introduces a distribution static synchronous shunt compensator based on a modular multilevel converter as a solution to regulate the overvoltage and give the distribution network more stability.
EMI Spectral Aggregation of Modulation Schemes in a Lab-Based DC Microgrid
Angel Pena-Quintal¹, Arun Khilnani¹, Leonardo Sandrolini², Mark Sumner¹, David Thomas¹, Steve Greedy¹
¹University of Nottingham, United Kingdom; ²University of Bologna, Italy

Abstract: DC Microgrid research has developed in the recent years following the increasing integration of power electronic Based switching devices at the point of common coupling in DC grids. This has led to electromagnetic interference problems caused by the spectral aggregation of conducted emissions in the low-frequency range (2-150 kHz). To investigate this, a framework for understanding spectral aggregation resulting from the multiple switching harmonics from the interconnected DC grid devices is analysed. In this work, three modulation techniques are applied to identical & parallel connected DC/DC converters forming a lab-based DC grid. The harmonics are then analysed for spectral aggregation Using an EMI receiver. This provides insights into the spectral aggregation of conducted emissions in the low-frequency range to promote electromagnetic compatibility and further facilitate a possible framework for standardisation of DC power quality.

Stochastic Modelling of Power Electronic Converters under Uncertainties
Erjon Ballukja, Karol Niewiadomski, Angel Pena-Quintal, David W.P. Thomas, Sharmila Sumurooah, Mark Sumner
University of Nottingham, United Kingdom

Abstract: The aim of this paper is to explore the usage of different sampling schemes in order to build a sparse Polynomial Chaos (PC) model for prediction of the oscillation frequency and its corresponding magnitude of the output voltage in a half-bridge buck converter. The 22 parasitic elements of this converter are modelled as random variables following a uniform distribution. As a result, from the considered sampling schemes, an Latin Hypercube Sampling (LHS) and Sobol’ sequences are determined to be the best in prediction of the magnitude, both with respect to accuracy and computational time needed for the creation of the model. The introduced accuracy measure, namely the a posteriori error, shows that the PC model approximates the oscillation frequency well. However, from a visual comparison with a model obtained from 8000 Monte Carlo samples, it can be seen that the PC model is not able to handle such a complex relationship properly.

TP-TU-PM2-TC10 Power Integrity Analysis and Design – I

A Methodical Approach for PCB PDN Decoupling Minimizing Overdesign with Genetic Algorithm Optimization
F. de Paulis¹, Y. Ding², M. Cocchini³, C. Hwang², S. Connor³, M. Doyle³, S. Scearce⁴, D. Becker³, A. Ruehli², J. Drewniak¹
¹University of L'Aquila, Italy; ²Missouri University of Science and Technology, USA; ³IBM Corporation, USA; ⁴Cisco Systems, Inc., USA

Abstract: An optimization routine is applied for the decoupling capacitor placement on Power Distribution Networks to identify the limit beyond which the placement of additional decaps is no longer effective, thus leading to wasting layout area and components, and to a cost increase. A specific test example from a real design is used together with the required target impedance and frequency band of interest for the PDN design. The effectiveness of the decap placement while selecting different layers of the stack-up, and while moving the upper limit of the PDN design band is analyzed. Such analysis leads to helpful insights Based on the progression of the input impedance during the optimization process, and to develop useful guidelines for avoiding over-design of the PDN.
Physics-Based Modeling for Determining Transient Current Flow in Multi-Layer PCB PI Designs
Yifan Ding1, Matthew S. Doyle2, Samuel Connor2, Dale Becker2, James L. Drewniak1
1Missouri University of Science and Technology, USA; 2IBM Corporation, USA

Abstract: A physics-based modeling methodology for determining the transient current flow path in multi-layer PI designs is given in this paper using a commercial board with a complicated structure as an example. Board structure analysis is done first to provide a physical basis of post-layout analytical and equivalent circuit modeling. A match of the PDN impedance between commercial tool simulation, post-layout analytical calculation, and the physics-based equivalent circuit modeling was achieved to support the model for the transient simulation. By analyzing the current response in all the vias, a clear representation of transient current flow across all via segments can be given layer-by-layer. The maximum current density in vertical vias can also be extracted in this process, providing a reference for preventing transient overcurrent design.

Application of Continued Fractions to Decoupling Capacitor Modeling in Multilayered Printed Circuits
Ihsan Erdin
Celestica Inc., Canada

Abstract: A continued fraction-based algorithm is developed for the analytical characterization of decoupling capacitors in multilayered printed circuit stackups. The proposed technique depends on modeling a stack of resonant cavities in the form of finite continued fractions. Mathematical models for a variety of configurations are developed including a capacitor and integrated circuit (IC) being (1) on the same side, (2) on the opposite sides and (3) on both sides of a printed circuit board (PCB). The frequency domain responses of the proposed models are observed in good agreement with data from numerical electromagnetic (EM) simulations, which validate the accuracy of the proposed algorithm. The developed models are intended for a quick and practical power integrity (PI) analysis of printed circuits with no limitation on the number of layers.

Analysis of Noise Coupling from Switching Voltage Regulator and Power Distribution Network to Differential Stripline Traces
Yang Wu1, Wenwu Wang1, Yinghua Ye1, Yinglei Ren1, Michael Leddige2, Xiaoning Ye2
1Intel Corporation, China; 2Intel Corporation, USA

Abstract: Differential stripline traces often need to be routed close to switching voltage regulators and their power delivery network for today’s high-density designs. To study the risk of the noise coupling, this paper offers a comprehensive discussion on noise coupling mechanisms. It classifies noise sources, analyzes coupling mechanisms of each source and states possible impacts. The coupling mechanisms are explained and verified by simulation data, measurement results and a new proposed fitting model.
WEDNESDAY – AUGUST 3, 2022

SS-WE-AM1-TC5 Hardware Security for Smart Society – Part I
(Sponsored by TC-5 High Power Electromagnetics)

Introduction to a Special Session on Hardware Security for Smart Society
Yuichi Hayashi\(^1\), Naofumi Homma\(^2\), Jong-Gwan Yook\(^3\), William A. Radasky\(^4\)
\(^1\)Nara Institute of Science and Technology, Japan; \(^2\)Tohoku University, Japan; \(^3\)Yonsei University, Korea; \(^4\)Metatech Corporation, USA

Abstract: In the smart society, individualized and comprehensive services, which collect a wide variety of physical/biological data and utilize the knowledge acquired from them, are expected in applications with the real world, such as automobiles, industrial and household robots, and tailor-made medicines. On the other hand, security has become an inseparable issue in utilizing and expanding such next-generation services. In particular, data protection by cryptography is essential for services that handle data containing sensitive and/or private information. However, when encrypted data is queried or processed, it usually needs to be decrypted once. It is difficult to completely prevent data stealing and/or tampering by attackers or malicious parties. In contrast, recently, encrypted-data processing techniques, which prevent information leakage by processing encrypted data without decryption, have seen much attention since Gentry’s pioneering work. This process is being researched and developed for social use because it can realize operations on encrypted data, which is difficult to achieve with conventional cryptography. On the other hand, although encrypted-data processing techniques provide a certain level of robustness against cyberattacks, it may be vulnerable to physical attacks at the hardware level. Such attacks may pose a serious security risk. Among them, side-channel attacks that use secondary physical quantities generated during system operations to obtain secret information or control are a real threat because they are non-destructive, non-invasive, and quick to execute. Based on the above background and issues, this special session will focus on side-channel attacks on next-generation cryptosystems, which include encrypted-data processing and the use of the state-of-the-art cryptography (e.g., quantum-resistant cryptography), and introduce the latest related-research trends.

On (in)Security of Edge-Based Machine Learning against Electromagnetic Side-Channels
Shivam Bhasin\(^1\), Dirmanto Jap\(^1\), Stjepan Picek\(^2\)
\(^1\)Nanyang Technological University, Singapore; \(^2\)Radboud University, The Netherlands

Abstract: Machine (deep) learning represents mainstream research and development direction. This success can be linked to the ever-increasing computational capabilities and vast amounts of available data, resulting in ever more sophisticated machine learning models. The design and training of such machine learning models are challenging and expensive tasks, which incentivize companies to protect and keep it secret. Additionally, the wide applicability of machine learning results in diverse deployment scenarios. Many machine learning architectures are deployed on edge devices, such as sensors or actuators, making them susceptible to side-channel attacks. This work surveys the research works considering electromagnetic side-channel and edge-based machine learning models. After discussing state-of-the-art attacks and countermeasures, we propose several open problems to be investigated in future research.

Learning-Based Denoising Algorithm for the Reconstructed Image Using Electromagnetic Emanations from the Display Device
Taesik Nam, Dong-Hoon Choi, Eui-Bum Lee, Jong-Gwan Yook
Yonsei University, Korea

Abstract: This paper proposes a learning-based denoising algorithm that improves the signal-to-noise ratio (SNR) of the information signal emitted from the display device. The information signal is easily degraded by noise and interference on the channel and has various SNR. In this situation, an algorithm that enhances the model's robustness is required to improve the degraded information signal into a learning-based denoising model. Therefore, this paper proposes a normalization method to enhance the robustness of the model.
Equivalent Circuit Modeling and Analysis of a Metamaterial based Wireless Power Transfer System
Webster Adepoju, Indranil Bhattacharya, Ismail Fidan, Ebrahim Nasr Esfahani, Olatunji Abiodun, Ranger Buchanan, Trapa Banik, Muhammad Enagi Bima
Tennessee Technological University, USA

Abstract: In this study, an equivalent circuit model is presented to emulate the behavior of a metamaterial-based wireless power transfer system. For this purpose, the electromagnetic field simulation of the proposed system is conducted in ANSYS high frequency structure simulator. In addition, a numerical analysis of the proposed structure is explored to evaluate its transfer characteristics. The power transfer efficiency of the proposed structure is represented by the transmission scattering parameter. While some methods, including interference theory and effective medium theory have been exploited to explain the physics mechanism of MM-based WPT systems, some of the reactive parameters and the basic physical interpretation have not been clearly expounded. In contrast to existing theoretical model, the proposed approach focuses on the effect of the system parameters and transfer coils on the system transfer characteristics and its effectiveness in analyzing complex circuit. Numerical solution of the system transfer characteristics, including the scattering parameter and power transfer efficiency is conducted in MATLAB. The calculation results Based on numerical estimation validates the full wave electromagnetic simulation results, effectively verifying the accuracy of the analytical model.

Performance Comparison of Different Control Schemes from the Electromagnetic Interference View for Single-Phase Multilevel Inverter
Cathrine E.S. Feloups1,2, Niek Moonen1, Frank Leferink1,3
1University of Twente, The Netherlands; 2South Valley University, Egypt; 3Thales Nederland B.V., The Netherlands

Abstract: When connecting a multilevel inverter to a load or the utility grid, two major factors must be considered: total harmonic distortion and electromagnetic disturbance due to the fast switching of the semiconductor devices. This paper focuses on these electromagnetic interference aspects of a multilevel inverter. The change in the inverter's control scheme and the change in the operating frequency on the conducted electromagnetic interference are investigated. This paper addresses carrier-based level-shifted pulse width modulation as a pulse width modulation control for the multilevel inverter. Three different level-shifted control schemes were compared at different switching frequencies to determine the effect of the control scheme and switching frequency on the electromagnetic interference. As an example of multilevel topology, a reduced device single-phase multilevel inverter is presented in this paper.

Model of the Influence of Interference of a 25 kV 50 Hz Traction Network on Parallel 50 Hz Track Circuits
Volodymyr Havryliuk
Ukrainian State University of Science and Technology, Ukraine

Abstract: The problem considered in the work is related to ensuring the electromagnetic compatibility of track circuits with a parallel traction network. To evaluate the influence of interference from the alternating current traction network on the operation of the track circuits a simplified model has been developed. The model is Based on the well-known multiconductor transmission line method, however, its use for modeling a traction network is difficult due to the longitudinal structural inhomogeneity of the traction system. The simplification proposed in the work assumes that the track circuit equipment connected to the rails insignificantly influence on the distribution of currents in traction network conductors. These assumptions make it possible to neglect the equipment of track circuits at the first stage of modeling, which greatly simplifies the equivalent circuit of the traction network, and allows us to represent it in the form of several homogeneous sections of multiconductor transmission lines with rolling stock units between them. Simulation of induced alternating current interference in the rails of the track with direct current traction is carried out at the second stage, taking into account the design features and electrical parameters of track circuits, as well as specific values of rail-to-ground conductance and earth conductivity, Using the values of the currents in the traction network conductors determined in the first stage.
Surface Roughness Effect from Different Surfaces of Microstrip Lines and Reference Plane
Yuanzhuo Liu¹, Yuandong Guo¹, Chaofeng Li¹, Xiaoning Ye², DongHyun Kim¹
¹Missouri University of Science and Technology, USA; ²Intel Corporation, USA

Abstract: Microstrip line structure comprises different conductors, such as trace and reference planes with different surface roughness levels due to the printed circuit board manufacturing process. The bottom surface of the trace is often rougher than the top surface of the trace, and the roughness level of different reference planes vary on different foil types and manufacturing process. To accurately model additional conductor loss due to such differences in microstrip lines, a new modeling method is proposed with different roughness levels on different surfaces and its reference plane, in contrast to the traditional roughness modeling approach that considers one uniform roughness distribution for all the surfaces. The effect on resistance value contributed by different surfaces is determined using additional microstrip models to analyze the effect of surface roughness from different surfaces and to improve the accuracy of insertion loss prediction with the modeled total resistance.

Parameter Estimation of Silicon Metal Grid Using Supervised Learning
Allan Sánchez-Masís¹, Sameer Shekhar², Christian Chaves Bejarano¹, Mauricio Aguilar Salas¹
¹Intel Corporation, Costa Rica; ²Intel Corporation, USA

Abstract: Silicon industry needs reduced design time to cater to broad annual product portfolio. Therefore, avoiding complex simulations during product design has immense value. To that end this paper presents machine learning Based parameter estimation method for silicon metal grid Based on past data. Regression results from employed machine learning algorithms and dependency on data standardization is discussed. Over 40 % reduction in root mean square error of grid resistance is reported which is crucial for obtaining accurate transient and AC simulation result.

Equalization Optimization for SerDes Channels with Constrained Bayesian Optimization
Majid Ahadi Dolatsara
Keysight Technologies, USA

Abstract: Assigning parameters of a feed-forward equalizer (FFE) can be a challenging and time-consuming task. In this work we introduce a machine learning algorithm to automatically optimize these parameters without the need to a domain expert. Conventional optimizers are not applicable to this problem because of a constraint over the FFE parameters. Therefore, we reformulate the problem and propose a modified Bayesian optimization algorithm to take this constraint into account. The proposed approach is validated with an example.
A Study for Improving Signal-to-Noise Ratio Measurement Method in Side-Channel Information Leakage of Cryptographic Hardware

Kengo Iokibe, Masaki Himuro, Yoshitaka Toyota
Okayama University, Japan

Abstract: Once the signal-to-noise ratio (SNR) of the side-channel (SC) leakage trace is known, the intensity of the SC information leakage source inside the integrated circuit (IC) can be identified from measurements carried out outside the IC. SNR observation of SC leakage can also make it possible to set quantitative design targets to achieve the demanded leakage intensity. We discuss an improved method for identifying the SNR of SC leakage traces composed of multiple transient responses of IC switching current. The IC switching current repeatedly occurs as the IC runs the cryptographic operation since the cryptographic algorithm repeats a set of sub-operations. The method was applied to simulated and measured leakage traces to eliminate the effect of transient IC switching current caused before the target sub-operation was processed. As a result, a transient component more extensive than the signal component of side-channel analysis was identified in the decoupling capacitor configuration, where the convergence of the transient response is slow. In addition, the correlation coefficients obtained by the correlation power analysis, a major side-channel analysis method, were plotted as a function of SNR, and the plot of the simulated traces agreed with the theoretical curve. On the other hand, some errors remained in the plot of the measured traces.

SASIMI: Evaluation Board for EM Information Leakage from Large Scale Cryptographic Circuits

Daisuke Fujimoto¹, Youngwoo Kim¹, Yuichi Hayashi¹, Naofumi Homma², Masanori Hashimoto³, Takashi Sato³, Jean-Luc Danger⁴
¹Nara Institute of Science and Technology, Japan; ²Tohoku University, Japan; ³Kyoto University, Japan; ⁴Télécom Paris, France

Abstract: In this paper, we propose a common evaluation board (Side-channel Attack Standard IMplementation and evaluation board: SASIMI) for the threat of acquiring information leaked from electromagnetic (EM) noise generated by devices. To prevent this threat, it is necessary to implement circuits that do not leak secret information, like a secret key, via EM side-channel, and conduct actual measurement and evaluation environment, which makes it difficult for a third party to reproduce the results. However, since captured EM activity is affected by the surrounding EM noise, the evaluation results may vary depending on the evaluation environment. The proposed evaluation board can implement various cryptographic circuits. The IC must be capable of reconfiguring logic and implementing large-scale cryptographic blocks such as post quantum cryptography. To reduce the influence of environmental EM noise, an independent power supply network and measurement port are provided for the IC to be evaluated thus improving the measurement reproducibility. In order to evaluate the performance of the SASIMI board, this paper proposes an index to evaluate the strength of the information of the secret key contained in the power supply noise. This index is to find the value of the resistance to be inserted into the power supply network of the prototype board. Measurement results show that the simple amplitude value of EM noise and the intensity of information leakage do not necessarily coincide.

The Technological Arms Race in Hardware Security

Shahin Tajik, Patrick Schaumont
Worcester Polytechnic Institute, USA

Abstract: For many years there has been an arms race between designers and adversaries of secure hardware. Improvements in the strategies for attack spur new defense techniques, and better defenses lead to improved attacks. In this contribution, first, we examine the technological dimensions of this arms race. While defenders benefit from increased circuit density and decreasing feature size, attackers benefit from novel side-channel attack vectors Based on optical and electromagnetic interactions with their target. Second, we analyze the feasibility and applicability of various side-channel attacks on primary units of cryptographic hardware. We also discuss the required time, cost, and expertise to mount these attacks. We then examine how well modern defense methods are capable of thwarting modern attack methods.
Modeling an ESD Gun Discharge to a USB Cable
Yang Xu1, Jianchi Zhou1, Daryl Beetner1, Javad Meiguni2, David Pommerenke3, Sergej Bub4, Steffen Holland4
1Missouri University of Science and Technology, USA; 2Amazon, USA; 3Graz University of Technology, Austria; 4Nexperia Germany GmbH, Germany

Abstract: When an electrostatic discharge (ESD) gun discharges to a USB cable, the routing and quality of the cable impacts the waveform seen at the printed circuit board (PCB) connected to the cable and the ability of an on-board transient voltage suppressor (TVS) to protect sensitive electronics. The impact of cable configurations during ESD gun contact discharge tests was investigated for multiple cable configurations. Injection to a cable pin whose shield is “floating” at the injection site can cause a double-peak in the ESD waveform at the PCB and a lower maximum stress level than when the cable shield is connected to the return plane. Poor shielding of the USB connector can further induce a pre-pulse effect, where a smaller ESD pulse arrives at the PCB before the main pulse. This pre-pulse can result in poor firing of the TVS device and thus worsen ESD stress at a sensitive IC. Circuit models were developed to anticipate and explain both of these phenomena. These models were incorporated into a system-level transient simulation including models of a PCB with a TVS and a pair of on-chip diodes. This system-level model was able to predict the quasi-static and peak voltages and currents at the on-chip diode during 1-8 kV ESD contact-discharge tests with various USB cable configurations to within less than 30%. These models were used to develop test and design guidelines to account for the impact of the quality and configuration of a USB cable during an ESD discharge.

TP-WE-AM2-TC7 Low Frequency EMC: Measurement

Evaluation of Three-Axis Magnetic Loop Antenna Cross Coupling for Low-Frequency Measurements
Denys Pokotilov1, Robert Vogt-Ardatjew1, Frank Leferink1,2
1University of Twente, The Netherlands; 2Thales Nederland B.V., The Netherlands

Abstract: Nowadays the majority of electrical devices are complex systems with different operation modes and switching elements. The amount of evaluation procedures that are needed to be done for these devices increases drastically. It is pushing standard radiated EMI measurements to the edge, where the advantage between time and the accuracy of measurements should be chosen. Standard low-frequency measurements as CISPR 36, used to evaluate radiated EMI for frequencies below 30 MHz, became too time-consuming and expensive. Proposed improvements which include time-domain multichannel measurements in combination with a three-axis shielded loop antenna can be more time-efficient. Compared to a conventional single-loop antenna, one of the potential challenges is the coupling between loops for the two- and three-axis antenna. This paper investigates the effect of coupling between the individual loops when illuminated with a complex field, which is shown to be the worst-case scenario. Only some minor coupling is observed implying that such a three-axis loop antenna can be used without sacrificing much accuracy, while still providing a significant improvement in the measurement time-efficiency.

Identifying Sources of Conducted Emissions by Measuring the Coherence Function
Xin Yan1, Fuwei Ma1, Wei Zhang1, Kaustav Ghosh2, Sameer Walunj2, Philippe Sochoux2, Victor Khilkevich1
1Missouri University of Science and Technology, USA; 2Juniper Networks, USA

Abstract: Conducted emissions (CE) is one of the electromagnetic interference (EMI) issues that pose serious compliance problems for electronic devices. for a system with several sources, estimating the contribution of each source to conducted emission at different frequencies can be a challenge. In this article, a coherence function-based signal separation method is presented and validated on two commercial power supply units (PSU). The noise generated by the PSU and measured at the line impedance stabilization network (LISN) port contains two predominantly uncorrelated signals associated with the power factor correction (PFC) and H-bridge/rectifier circuits with unknown contributions at different frequencies. Two reference signals are obtained by probing the emission signals close to the sources. By calculating the coherence between the LISN noise signal and the reference signals, the contributions of these two signals to the noise are obtained. The measurement of the signal contributions can help engineers identify the dominant sources and mitigate the emissions more efficiently over a wide range of frequencies.
Electromagnetic Influence of AC Traction Network on the Railway Communication Lines
Tetiana Serdiuk, Hossein Taghizade Ansari, Rodica Botnarevscaia
Ukrainian State University of Science and Technologies, Ukraine

Abstract: This paper deals with the evaluation of electromagnetic influence of AC traction network on the overhead railway communication lines. The dependence of voltage on a convergence width of communication lines and traction network are given. The experimental research of harmonics in traction current and the theoretical investigation of their influence on communication lines were carried out.

High Density Sensor Network for Monitoring Grid Events
Robert King1, Theo Laughner2, Bob Marshall3, Chris Sloop3, Jon Wellinghoff4
1Good Company, USA; 2Lifescale Analytics, USA; 3Whisker Labs, Inc., USA; 4Grid Policy, USA

Abstract: A customer installed residential-based monitoring system has been deployed in multiple areas to help address electrical hazards that cause house fires. Due to the high-density and high-resolution of the expanding distributed sensor network, additional benefits can be realized by utilities from higher visibility into power quality events and disturbances within their networks. This paper describes the technology and the benefits, contrasts other monitoring technologies, and provides a variety of case studies of this new approach to monitoring the grid.

TP-WE-AM2-TC10 Numerical Modeling and Simulation Techniques – III

Performance Judgment of Automotive Wire Harness based on Convolutional Neural Network
Tadatoshi Sekine, Hiromi Itaya, Shin Usuki, Kenjiro T. Miura
Shizuoka University, Japan

Abstract: This paper describes a performance judgment method Based on a convolutional neural network (CNN) for an automotive wire harness. The proposed method uses the CNN to represent the correlation between the cross-sectional shape of the wire harness and its electric performance. We consider combinations of a few patterns of the inputs and outputs of the CNN and discuss about the usefulness of each input-output pattern for the prohttps://emc-sipi2022.abstractcentral.com/login#/per judgment.

Simplified Modeling Approach for Extracting Bump Current Profile Using Transfer Function
Raewoon Yoo, Sungwook Moon, Jiyoung Park, Seungki Nam
Samsung Electronics Co. Ltd., Korea

Abstract: An accurate bump current profile modeling is important to analyze system-level power integrity (PI) performance for target designs. However, it is difficult to directly extract current profile at bumps corresponding to entire desired scenarios due to running time limitation. In this work, we propose an efficient and simple modeling approach to extract current profile Using a transfer function that can reduce significantly the extraction time without accuracy losses.

Asymptotic High Frequency Behaviors of the Lossy Transmission Line
Tao Wang, Brian Brecht
Teradyne Inc., USA

Abstract: Today’s high speed signal delivery requires ultra-broad working band for transmission lines from DC all the way to millimeter waves. In this paper, we developed a new asymptotic high frequency input impedance limit for the lossy transmission line, which shows the dependency on the dielectric loss tan. It gives us a convenient limit of return loss to the lossy transmission. We also proposed a new formulation to find the passing length point when the absorbed power in the line surpasses the reflected power. These methods provide new insights to lossy transmission lines’ high frequency behaviors.
Radiated-Emission Analysis of Electrical Interconnection Structures based on a Modal Network Model
Hannes Schreiber, Marco Leone
Otto von Guericke Universitat Magdeburg, Germany

Abstract: A novel method for calculating the radiated far field of electric interconnection structures based on an equivalent modal network model is presented. From the amplitudes of the current modes in the system, as obtained by circuit simulation, the radiated field is set up as linear combination of the corresponding radiation modes. This enables an efficient broadband simulation of the radiation of interconnection structures with different, linear loads, facilitating the optimization with respect to the electromagnetic compatibility (EMC) of the system. The proposed method is validated in the frequency domain by comparison with Full-Wave reference results.

Common-Mode Contribution to Currents Induced on a Terminated Multiconductor Transmission Line in a Reverberent Field
James C. West¹, Charles F. Bunting¹, Paul G. Bremner²
¹Oklahoma State University, USA; ²Robust Physics, USA

Abstract: The currents induced on terminated multiconductor transmission lines (MTLs) by stochastic electromagnetic fields in overmoded cavities are examined numerically. Techniques that find the mean-squared currents from a rigorously defined number of deterministic evaluations are applied to classic transmission line and moment method models. The calculations show that line imbalance leads to significant common-mode contributions to the induced currents in approximately matched termination loads that are not predicted by transmission line theory. The relative level of the common-mode contribution is dependent on the level of line imbalance presented by the full MTL cross-section around the termination load under test. A reduction in cross-section dimensions leads to an increase in the relative contribution of the common mode.

On the Vectorial Property of Stochastic Dyadic Green’s Function in Complex Electronic Enclosures
Shen Lin, Yang Shao, Zhen Peng
University of Illinois Urbana-Champaign, USA

Abstract: This paper presents a physics-oriented, mathematically tractable statistical wave model for analyzing the naturally occurring chaotic dynamics of high-frequency reverberation within complex cavity environments. The key ingredient is a vector dyadic stochastic Green’s function method derived from Wigner’s random matrix theory and Berry’s random wave hypothesis. The stochastic Green’s function statistically replicates the multipath, ray-chaotic interactions between ports of entry and ports of interference without involving the complex details within the target’s enclosure. The work achieves a physics-based modeling and simulation capability that predicts the probabilistic behavior of backdoor coupling to complex electronic enclosures.
Modeling Radiated Emissions from PCBs in Shielding Enclosures based on a Numerical Green's Function Approach
Zi An Wang¹, Li Jun Jiang², Jun Fa Mao¹, Ping Li¹
¹Shanghai Jiao Tong University, China; ²The University of Hong Kong, China

Abstract: To accurately and efficiently model the radiated emissions from printed circuit boards (PCBs) placed in shielding enclosures, in this work, a novel approach based on the numerical Green's function (NGF) is proposed. In terms of Schelkunoff's equivalence principle, if the interior of the shielding enclosure is filled up with perfectly electric conductor (PEC), only tangential electric fields over the ventilation slots are sufficient to obtain the radiated emissions. However, due to the presence of the PEC filled shielding box, the in-situ Green's function is not available. To conquer this problem, the proposed approach can be split into two steps. In the first step, the tangential electric fields over ventilation slots are sampled. The NGF over a spherical surface encompassing the perfectly electric conductor (PEC) filled shielding enclosure is obtained by full-wave simulation subsequently. The magnetic field over the spherical surface can be calculated on the basis of the NGF and the sampled electric field. In the second step, the spherical surface is filled up with perfectly magnetic conductor (PMC). The radiated emission outside the spherical surface is predicted according to the previously calculated magnetic field via expanding the Green's function by spherical modal functions. The preponderance of the proposed method in efficiency and versatility is verified by representative numerical examples.

TP-WE-PM-TC8 TC8 – Aeronautics and Space EMC

Superposition of EMI in Multiple Interconnected SMPS
Leonardo Malburg¹, Nick Moonen¹, Frank Leferink¹,²
¹University of Twente, The Netherlands; ²Thales Nederland B.V., The Netherlands

Abstract: Enabling All-Electric Aircraft (AEA) operations result in considerable EMC compliance challenges. Considering its architecture, secondary distribution systems will eventually interact with equipment not regulated by the DO-160 standard. Portable electronic devices (PEDs) introduced by passengers could result in compatibility issues. In this paper, two approaches were compared when assessing EMI on a parallel multi-load circuit. The conducted emissions of four different power supplies representing PEDs were individually measured, then combined resulting in an equivalent full-load assessment. The same loads were simultaneously measured, representing the in situ test. The differences in EMI levels are presented, depicting inherent harmonic components from each approach. The results are discussed, showing reduction in EMI levels between approaches, which can enable filter design optimization on a component level.

EMI/EMC, Lightning, and RF Test Verification for the Virgin Orbit LauncherOne Vehicle
William Elkman, Cheyne Scoby, Umer Qureshi, Andrew Shirali
Virgin Orbit, USA

Abstract: Virgin Orbit has developed the LauncherOne (L1) two stage LOX/RP-1 launch system, capable of deploying payloads up to 300kg to 500km Sun Synchronous Orbit (SSO), and deploying payloads up to 500kg to 200km Low Earth Orbit (LEO). The EMI/EMC Control Program has been tailored from RTCA-DO-160F and MIL-STD-461F. Electromagnetic Compatibility (EMC) for LauncherOne has been verified to Launch Range, EGSE (electrical ground support equipment) and internal launch vehicle (LV) Avionics systems electromagnetic environments, by tailored, limited component/unit test, subsystem test and limited system level test. The EMI/EMC Control Program has been tailored from RTCA-DO-160F and MIL-STD-461F. Electromagnetic Compatibility (EMC) for LauncherOne has been verified to Launch Range, EGSE (electrical ground support equipment) and internal launch vehicle (LV) Avionics systems electromagnetic environments, by tailored, limited component/unit test, subsystem test and limited system level test. The EMISMs (electromagnetic interference susceptibility margins) for interfaces internal to L1 and between L1-747, have been verified by System qualification test, and are 6dB for noncritical and 20dB for critical interfaces. This paper reports the test results used to verify functional performance and margins.
EMI/EMC, Lightning, Space Environment and SEE Design for the Virgin Orbit LauncherOne Vehicle
William Elkman, Cheyne Scoby, Umer Qureshi, Andrew Shirali
Virgin Orbit, USA

Abstract: Virgin Orbit has developed the LauncherOne (L1) two stage LOX/RP-1 launch system, capable of deploying payloads up to 300kg to 500km Sun Synchronous Orbit (SSO), and deploying payloads up to 500kg to 200km Low Earth Orbit (LEO). The company has implemented an EMI/EMC Control Program, tailored from RTCA-DO-160F and MIL-STD-461F. Electromagnetic Compatibility (EMC) for LauncherOne has been verified to Launch Range, EGSE (electrical ground support equipment) and internal launch vehicle (LV) Avionics systems electromagnetic environments, by analysis, and tailored, limited component/unit test, subsystem test and limited system level test. The EMISMs (electromagnetic interference susceptibility margins) for interfaces internal to L1 and between L1-747, have been verified by System qualification test, and are 6dB for noncritical and 20dB for critical interfaces. [10] Reports the test methods used to verify functional performance and margins.

Single Event Effects Test Verification for the Virgin Orbit LauncherOne Vehicle
William Elkman, Cheyne Scoby, Umer Qureshi, Andrew Shirali
Virgin Orbit, USA

Abstract: This paper describes the SEE (single event effects) design verification approach and proton beam verification test results for the Virgin Orbit LauncherOne (L1) two stage LOX/RP-1 launch system, capable of deploying payloads up to 300kg to 500km Sun Synchronous Orbit (SSO), and deploying payloads up to 500kg to 200km Low Earth Orbit (LEO). [9] Describes the EMI/EMC Control Program tailored from RTCA-DO-160F and MIL-STD-461F. [10] Reports the Electromagnetic Compatibility (EMC) verification procedures and results for LauncherOne.

TP-WE-PM1-TC10 High-Speed Link/Bus Design – I

Bandpass Negative Group Delay Analysis of VIu-Shaped Trace Crosstalk Effect
Xiaoyu Huang¹, Fayu Wan¹, George Chan², Eric Jean Roy Sambatra³, Samuel Ngoho⁴, Blaise Ravelo¹
¹Nanjing University of Information Science and Technology, China; ²ASM Pacific Technology Ltd., China; ³Institut Supérieur de Technologie, Madagascar; ⁴Association Française de Science des Systèmes, France

Abstract: This paper investigates on the bandpass (BP) negative group delay (NGD) effect from printed circuit board (PCB) trace crosstalk. The designed and prototyped PCB proof-of-concept (POC) is constituted by arbitrary traces of VIu-shaped coupled lines ended by radial open stubs. The BP-NGD function is characterized by the basic qualification parameters as the NGD value, center frequency and bandwidth. The influence of the u- and V-shape trace physical parameters on the main interconnect I-line is illustrated by sensitivity analyses. The VIu POC BP-NGD behavior is validated by simulation and measurement. The BP NGD analysis reveals the PCB trace crosstalk effect with the apparition of dual-band response characterized by NGD value-center frequencies of about (-1 ns, 2.43 GHz) and (-1 ns, 2.58 GHz).
Copper Roughness Induced Gain for Inductance and Resistance on Stripline Interconnects
Gerardo Romo Luevano, Tim Michalka, Vinit Sonawane, Varin Sriboonlue
Qualcomm Technologies, Inc., USA

Abstract: This paper presents a method for broadband characterization of copper roughness induced gain factor for resistance and inductance on stripline interconnects. The characterization relies on S-parameter measurements of striplines fabricated with smooth (VLP) and rough (RTF) copper finishing on otherwise identical stack-ups. The VLP and RTF interconnects are each characterized from two-line measurements; then the R, L, G, C parameters for each are extracted under the same Tanδ condition, which yields the copper roughness factor for the inductance and resistance of the RTF interconnects accurately characterized up to 40 GHz. The method also allows to uniquely characterize the permittivity of the dielectric and demonstrates that the increase in inductance due to roughness is considerably larger than that for resistance, which is a necessary condition for a causal model. The experimental characterization shows excellent correlation to a newly introduced generalized causal Hammerstad model, and good correlation to the Huray model, when multiple terms in the expansions are used.

Analysis of a TDR Technique to Measure Dielectric Constant
Aditya Rao1, Eric Bogatin1, Melinda Piket-May1, Dan Schofield2, Balaji Sankarshanan2, Aakriti Srivastava1
1University of Colorado Boulder, USA; 2GE Healthcare, USA

Abstract: Low cost measurement of material properties is a valuable tool which can aid in pre-layout design and post-layout verification. This paper analyzes a low-cost technique to measure the dielectric constant of a microstrip substrate Using a Time Domain Reflectometer (TDR), explores the artifacts which can arise in these measurements and provides guidelines to reduce these artifacts.

USB4.1 Compliance Test – Procedures and Issues
Sherman S. Chen1, Zhifei Xu2, Antoine Moret2
1Kandou Bus, United Kingdom; 2Kandou Bus, Switzerland

Abstract: The paper examines the primary testing items & procedures of the USB4.1 Gen3 Compliance Test Specification (CTS), i.e., TX test point (TP) 2 test, TX TP3 test, and RX Stress test. The methodology of validating the device under test (DUT) IBIS AMI model against the USB4.1 CTS is described. The roles and impacts of the key parameters are explained and evaluated. A novel approach for inferring the ISI jitter is introduced. The test results obtained through simulation with channels of two representative characteristics are presented. In addition, some concerns associated with the latest standards are discussed, along with proposals for strengthening the clarity of the standard.

TP-WE-PM2-TC9 Computational Electromagnetics – II

Full Wave Hybrid Simulation of a Transformer in an Equivalent Model Setup
Daniel Lyngby Commerou, Morten Sørensen
University of Southern Denmark, Denmark

Abstract: In power converters, the main contribution to the radiated emission is common-mode current on the attached cables. The coupling path to these cables have previously been investigated with several different methods. This paper suggests an equivalent model hybrid simulation of a transformer, made to reduce modelling effort and simulation time in a step to use full wave simulation as investigation tool. The H-fields were measured Using an in-house near-field scanner. The equivalent model hybrid simulation was performed and results were compared. A fair to good agreement of the results from approx. 80 MHz to approx. 600 MHz is visible.
A Segmentation Strategy for Structures with Common Mode Coupling
James Hunter¹, Shengxuan Xia¹, Aaron Harmon¹, Mohamed Z.M. Hamdalla², Ahmed M. Hassan², Victor Khilkevich¹, Daryl G. Beetner¹
¹Missouri University of Science and Technology, USA; ²University of Missouri Kansas City, USA

Abstract: The level of electromagnetic coupling to electronic devices can vary widely from one device to another. When considering the induced voltage from an incoming plane wave on printed circuit boards (PCBs) and their attached cable harnesses, there is significant variety in the configuration of the devices that could be seen. This encourages the use of segmentation, so that the components of these devices (PCBs, connectors, and harnesses) can be modeled separately to alleviate simulation burden. This allows for a more flexible model and a “toolbox” to construct devices with. The goal of this work is to use segmentation to model the external electromagnetic radiation from these devices. The radiation pattern and reciprocity theory can later be used to calculate the voltage coupled from an incident plane wave. Most realistic devices exhibit strong common mode (or antenna mode) coupling that cannot be ignored during segmentation. When segmenting such structures, a multi-modal approach is needed to incorporate coupling from both the common (CM) and differential (DM) modes and to allow these currents to flow properly between the blocks. This work introduces the concept by segmenting a simple dipole, which requires the common mode only, and then applies the complete methodology to a more complicated structure that requires the incorporation of both modes.

Safety and Availability Considerations in a Triple Modular Redundant Time Diverse System with Over-Voltage Detection
Hassan Tirmizi, Jonas Lannoo, Dries Vanoost, Guy A.E. Vandenbosch, Davy Pissoort
Katholieke Universiteit Leuven, Belgium

Abstract: In this paper, an analysis is done for safety and availability considerations in a Triple Modular Redundant (TMR) communication channel that is subjected to a multiharmonic electromagnetic disturbance under reverberation conditions. Time diversity is used as an EM-resilience measure along with over-voltage detection in order to incorporate fault tolerance in the system design. The study shows that combining over-voltage detection with an EM-resilience measure like time diversity is quite effective in dealing with Electromagnetic Interference (EMI) induced failures over a broad range of Signal to-Interference Ratios (SIR). The results show a considerable reduction in failure probability and a marked improvement in fault tolerant capacity.

The Impact of the RS103 Excitation on the Differential Received Eye Patterns for Digital Interconnects – A Time-Domain Approach
David Norte
Ball Aerospace, USA

Abstract: Compliance to the RS103 standard for space applications is generally required by many programs. Although the test requirements for this standard are well known, it is not always well known how the RS103 excitation affects the received signals for digital applications, for example. This paper utilizes a transmission line model to help enable a better understanding of the degradations that can be induced upon the received eye patterns from shielded differential transmission lines for digital applications that are exposed to a constant 20V/m RS103 excitation. It is determined that the most serious degradations occur in the form of increased timing jitter, as well as reduced eye openings that can increase the bit-error-rate for the given digital interconnect and for operational bit rates up to 3.0 Gbps. It is also emphasized that low end-to-end transfer impedances that include the effects of the shields, connectors, and pigtails, as well as highly balanced transmissions, can help mitigate these degradations.
TP-WE-PM-TC3 Electromagnetic Environments

Session Abstract: The papers within this session detail a number of different electromagnetic environments and how to characterize them. The overall electromagnetic environment in our surroundings is complex and only getting more so as technology progresses. The papers here describe specific environments such as accelerators and automotive, and also techniques that can be used for characterization.

Resilience of Reed-Solomon Codes against Single-Frequency Electromagnetic Disturbances: Fault Elimination through Encoder Tuning
Pejman Memar, Jens Vankeirsbilck, Dries Vanoost, Tom Holvoet, Jeroen Boydens
Katholieke Universiteit Leuven, Belgium

Abstract: In increasingly electromagnetic-polluted environments, communication networks are becoming more vulnerable. Even networks equipped with error control techniques suffer from this problem. Electromagnetic disturbances can result in corrupted data which are undetectable by error control techniques. Such scenarios are extremely dangerous as the system is unaware of the corruption. This could lead to critical failures. Thus, protecting communication networks against this type of undetected corrupted data is of the utmost importance. In this regard, this paper presents an effective fault elimination approach through encoder tuning. This technique enhances the resiliency of a well-known forward error correction code, known as primitive Reed-Solomon Codes, against steady-state single-frequency electromagnetic disturbances. It is found that this approach outperforms the previously proposed multi-layer inversion-based fault elimination approach in mitigating undetected corrupted data. Furthermore, it is shown that encoder tuning has two main implementation advantages over our previous approach. First, it does not require an extra layer to perform fault elimination. Second, it eliminates the overhead of performing double syndrome calculation at the consumer side.

Magnetic Field Noise in the Ultra-Low Frequency (ULF) Band and Historical Comparisons
Chennmg Zhou¹, David P. Snyder¹, Benjamin Epstein², Zachary T. Robinson³, George Y. Jin³, Priscilla Y. Tang³, Ronald G. Polcawich⁴, Mike Roper⁵
¹NIOSH, USA; ²ECS Federal, LLC, USA; ³Johns Hopkins University Applied Physics Laboratory, USA; ⁴US Army Research Laboratory, USA; ⁵Vital Alert Communications, Inc., Canada

Abstract: The results of low-frequency (< 6 kHz) magnetic field noise measurements at underground coal mines are presented. A comparison of these results to measurements made 35 to 40 years ago suggests that the magnetic field noise has increased substantially (20-30 dB) since this period of time. The ambient noise level is an important factor in the operation of Through-The-Earth (TTE) communications systems, and the data presented herein are an essential consideration in the design of future TTE systems.

On-Site Automotive Environment Measurements for a Risk-Based EMC Approach
Vasiliki Gkatsi¹, Robert Vogt-Ardatjew¹, Frank Leferink¹,²
¹University of Twente, The Netherlands; ²Thales Nederland B.V., The Netherlands

Abstract: Due to the on-going changes in modern technologies, deeper investigation of the complex automotive electromagnetic environments is necessary. Since conventional standardized testing methods are lacking characteristics met in real automotive electromagnetic environments, a risk-based electromagnetic compatibility approach can conclude to detection of potential electromagnetic interference threats. A measurement of a real automotive electromagnetic environment is proposed and investigated Using two different measurement methods addressing the temporal and spatial variations of the electromagnetic environment. This investigation reveals the complexity of real electromagnetic environments and the difficulty of them being sufficiently described to warrant electromagnetic compatibility due to continuously varying parameters over space, time, and frequency. The random-walk technique is applied and compared with a discrete static measuring technique of acquiring data. Examination of the collected data is made along with discussion on their possible application through statistical tools.
Near Field Radiation from an Electromagnetic Accelerator
F. Albarracin, G. Appiah, A. AlAli, C. Kasmi, N. Mora
Technology Innovation Institute, United Arab Emirates

Abstract: This work presents the preliminary analysis on the electromagnetic fields radiated from a 15 mm squared bore, 1 m length electromagnetic accelerator when connected to a 37-kJ pulsed energy source.

A Novel Stochastic Vibration-Based Algorithm for Electromagnetic Leakage Detection
Bin Ye¹,²
¹Chinese Academy of Sciences, China; ²University of Chinese Academy of Sciences, China

Abstract: in the safety detection of the current electromagnetic leakage of electronic equipment, weak leakage signal frequencies are easily missed, involving other problems. This paper presents a new algorithm connecting with stochastic vibrating electromagnetic leakage detection, which uses the principle of stochastic vibration to enhance the leak signal strength and reduce the noise strength by migrating the noise signal energy from the original signal to the leak signal, thus solving the problem arising from leak detection of spectrum. The algorithm is implemented by frequency shifting, a new genetic algorithm and segmented biostability to overcome the shortcomings in the traditional bistatic random algorithm. This paper demonstrates the effectiveness of the method in electromagnetic leakage detection through experiments and simulations.

TP-WE-PM2-TC10 2.5D/3D/Exotic ICs and Packing Technologies

Overcoming Design Challenges for High Bandwidth Memory Interface with CoWoS
Victor Chen¹, Bassem Abdel-dayem¹, Changhua Wan², Feng Ling²
¹Amazon, USA; ²Xpeedic, USA

Abstract: High bandwidth memory (HBM) with Chip-on-Wafer-on-Substrate (CoWoS) packaging technology to achieve chiplet-based heterogeneous integration systems is increasingly adopted by the industry. Due to the number of IOs and micron-scale structures, signal integrity analysis becomes challenging. This paper presents a novel EM solver with high capacity and scalability. An automated design flow is developed on top of the solver to facilitate the simulation of HBM interfaces for CoWoS. Various HBM interfaces are simulated for both CoWoS-R and CoWoS-S. Their performance is compared.

On Package Optics for the High-Speed Serdes Interconnects
Ajay K. Vaidyanathan, Praveen Kumar Yenubari, Shanmugapriya D, Sathish Kumar R
Intel Technology India Pvt Ltd, India

Abstract: Owing to the ever-increasing data rate requirements on the Data Center Graphics (DCG) products, technologists are always looking for methodologies to improve power efficiency and channel performance of the High-speed IO interconnects. On-package optics provides the opportunity to shorten the Common Electrical IO (CEI) 112G channel length by tens of millimeters to enable a very short distance between ASIC and optics. This paper presents the on-package optical IC implementation that shrinks the electrical channel length drastically and thereby the losses and noise coupling between serdes channels.

Analysis of Switching Voltage Regulator Noise Coupling to a High-Speed Signal
Junho Joo¹, Soumya Singh², Seema PK², Chulsoon Hwang³, Bhyrav Mutnury³, James Drewniak¹
¹Missouri University of Science and Technology, USA; ²Dell Inc., India; ³Dell Inc., USA

Abstract: In this paper, a real-world signal and power integrity problem due to the switching noise of buck converter IC coupling to a high-speed signal line in a server system is studied. The rapid switching field effect transistors (FETs) of the voltage regulator module (VRM) are the main source of the performance degradation on the nearby signal lines. A simplified mock-up simulation setup is proposed Based on the actual board design to investigate the coupling mechanism of the VRM noise. The mechanism of the switching noise coupling is explained with the phenomenon of capacitive and inductive coupling. Based on this finding, the solutions will be identified as decreasing the inductive coupling by optimizing the board layout.
FPC Design Guidelines for Enabling High-Speed Intra-Panel Interface in Large-Size LCD TVs
Jinho Kim, Sungwook Moon, Jihyun Lee, Seonha Lee, Hyun-Wook Lim
Samsung Electronics Co. Ltd., Korea

Abstract: In this work, the eight cases of independently designed flexible printed circuit (FPC) for a large-size and high-resolution liquid crystal display (LCD) TV module were analyzed in a perspective of signal integrity (SI) by comparing the eye-opening simulation results from the measured channel models. Although the case of two-layer FPC with a ground plane has advantages in terms of impedance matching and crosstalk mitigation, the case of single-layer FPC was found to have better SI performance than the two-layer FPC as long as crosstalk is properly suppressed by optimizing the layout design even if the impedance matching is not perfectly satisfied.

THURSDAY – AUGUST 4, 2022

TP-TH-AM1-SC5 Conducted EMI Research

On Measuring the Response to Differential Mode Noise of Common Mode Chokes
A. Ojeda-Rodríguez, C. Domínguez-Palacios, J. Bernal-Méndez, M.A. Martín-Prats
University of Seville, Spain

Abstract: This work analyzes different techniques to measure the attenuation of differential mode noise provided by common mode chokes. The proposed setups are alternatives to the direct and symmetrical setups described in CISPR-17, which are also investigated in this work. This study is based on a modal analysis of a high-frequency circuit model of the common mode choke that allows for obtaining analytical expressions for the insertion loss of the common mode choke when excited in different setups in terms of the admittances of the modes excited in each setup. This provides additional insight to understand which modes are excited in each setup. We demonstrate that the setups are equivalent at low frequencies and we identify the key differences between them at high frequencies, in particular regarding their different frequencies of resonance. To validate our analysis, we have measured and characterized different commercial common mode chokes, and we have verified that in all the cases the measured transmission coefficients exhibit the behavior predicted by the theoretical analysis.

Simple and Accurate Characterization of Nanocrystalline Common Mode Chokes
A. Ojeda-Rodríguez, C. Domínguez-Palacios, J. Bernal-Méndez, M.A. Martín-Prats
University of Seville, Spain

Abstract: This work proposes a quick and simple method to obtain the parameters of a circuit model of a common mode choke with nanocrystalline core. Common mode chokes with nanocrystalline cores, unlike chokes with cores made of ferrite or iron powder, exhibit a strong dependence with the frequency of its magnetic permeability, which makes it difficult to find a simple circuit model able to account for the response of the choke to both common mode and differential mode signals in a wide frequency range. We propose a circuit model along with a simple method to obtain the parameters of the model, and we demonstrate that the circuit model of the choke accounts for the response of the choke within a frequency range that encompasses the frequencies where most electromagnetic compatibility regulations limit the conducted emissions of electronic devices. To validate the proposed model, different commercial common mode chokes have been measured and the predicted performance of the model has been compared with the measured responses. We have checked that in most cases the proposed approach yields accurate models of nanocrystalline common mode chokes up to 50 MHz.
Abstract: Aim of this work is an investigation on the conducted emission (CE) of a dynamic wireless power transfer (DWPT) system for automotive applications. The main difference of DWPT systems compared to stationary charging systems is due to the fast transients produced by the on/off and off/on transitions of the transmitting coils during the passage of the vehicle in motion. These transients could represent a significant issue in terms of CE, especially if multiple vehicles are moving along the electrified road. Real components such as coupled inductive coils, compensation networks, converters and battery are suitably modeled by equivalent circuits which are analyzed by SPICE models. The CE is investigated considering different scenarios with single and multiple electric vehicles (EVs) absorbing each 10 kW at 85 kHz in a section of an electrified road with short track architecture. The obtained results demonstrate that higher order harmonics of currents produced by electronic converters are not negligible in both ground and vehicle circuits.

Simulation of EMP Coupling Using Electromagnetic Transient Solvers
Joshua Butterfield, Randy Horton
Electric Power Research Institute, USA

Abstract: This paper develops an approach Using electromagnetic transients (EMT)-type software tools to perform electromagnetic pulse coupling analysis of arbitrarily oriented above-ground cabling systems. The proposed approach allows modeling of large, complex systems such as cabling systems within electrical substations with less complexity than previous methods. Additionally, the approach allows non-linear elements to be included in the model. The results from simulations Using the proposed method are compared with results from testing of a four-conductor cabling system inside an RS-105 guided wave test facility.

Coupling of E1 High-Altitude Electromagnetic Pulse to Signal and Control Wires in an Electric Power Substation Yard Trench
Robert G. Olsen1, Joshua M. Butterfield2, Johnny J. Moore3, Timothy M. Minteer3
1Washington State University, USA; 2Electric Power Research Institute, USA; 3Schweitzer Engineering Laboratories Inc., USA

Abstract: High-altitude electromagnetic pulse (HEMP) from a nuclear detonation 30 kilometers or more above the surface of the Earth may pose a threat to digital protective relays connected to conductors routed in an electric power substation yard. This paper compares the results from four different simulation tools for three simplified models representing the coupling of E1 HEMP to one signal and control wire located in a trench of an electric power substation yard. The coupling of E1 HEMP to multiple signal and control wires within unshielded cables in the trench of a substation yard containing multiple cables is also investigated.

Experimental Studies of E1 HEMP Coupling and Propagation Effects for Power Substation Yard Cables
Edward B. Savage, William A. Radasky
Metatech Corporation, USA

Abstract: Experimental time domain measurements of the E1 HEMP response of power substation yard cables are presented. These look at how velocity differences and attenuation affect the E1 HEMP driven pulses on such cables. One test looks at the effect on the external cable signal due to being near the ground, and the other looks at the effects inside a shielded yard cable.
Challenges for Enabling Multiple High-Speed Interfaces on a Reference Validation Platform
Esha Kondapuram, Chong-Jin Ong, Benjamin Silva, Brandon Lambacher
Intel Corporation, USA

Abstract: For a product to be validated with all use cases, several reference designs would be required. This would increase the overall cost and time to market the product. A single reference validation platform solution with limited routing layers utilizing hardware configurable topology options was developed to enable validation. A single High-Speed IO interface was configurable to allow for the validation of three different platform configurations. This paper discusses the signal integrity challenges like interfaces violating the platform design guidelines, includes review of validation data, and review of the mitigation plans for a successfully validated platform.

Artificial Intelligence based Advanced Signal Integrity Predictions
Prerna Kumari, Nithya Ramalingam, Zaman Zaid Mulla, Archana Ganeshan, Ranjul Balakrishnan, Anoop Karunan
Intel Corporation, India

Abstract: As the signaling speeds continue to increase, maintaining Signal Integrity (SI) for the complete customer design space is a huge challenge. These constraints, along with the limitations of traditional methods of design space inclusion and channel behavior prediction pose significant risk to system design. Specific focus is needed on design space utilization techniques used for factoring in platform variability. Interfaces like PCIe Gen5/Gen6/Gen4 etc. exhibit higher order behaviors that current prediction algorithm like Response Surface Method (RSM) simply cannot model. This leads to inaccurate system behavior understanding and results in unreliable platform design recommendations. To minimize design risk and achieve highly reliable scaling of Platform Design Guide (PDG) solution, this paper discusses the implementation of an Artificial Intelligence (AI) Based methodology to cover complete design space and predict higher order system behaviors with high accuracy. The goal is to achieve a model with at least 90% R square and maximum 5% of result range Root Mean Square Error (RMSE). Current SI method of Design of Experiments (DOE) creation and results prediction consists of creating a combined RSM type DOE table and fitting it with second order RSM modelling in JMP. It has limitations since RSM uses only three variable levels therefore doesn’t cover the entire design space. It can only model up to second order system behavior. These issues can be addressed Using proposed AI Based methodology which effectively captures the complete design variance Using space filling algorithm. Paired with this, various AI Based algorithms are explored for advanced SI results prediction. These techniques have been encapsulated into an AI Based tool which supports automatic DOE creation and predicts the system behavior post simulation in a SINGLE ITERATION. This helps reduce manual interventions and improve efficiency along with highly desirable R square and RMSE values.

Advanced Chip Interposer with Micro-Bump Duality
Omer Vikinski, Alexander Waizman
Intel Corporation, USA

Abstract: Silicon technology and chip design constraints are the main drivers to tile architecture development. In tile architecture, packaged silicon is disaggregated into smaller tiles assembled on a chip interposer, enabling usage of different process node for each tile. This paper describes an advanced 2.5D chip interposer that enables disaggregation Using dual micro-bump connectivity. Small geometry, fine pitch micro-bumps, used for die-to-die signals interconnect through the chip interposer. Regular geometry, regular pitch micro-bumps, used for external signals connectivity and power delivery. Majority of regular pitch micro-bumps, use straight through vertical path connection to the package bumps. On a need basis, chip interposer die is used for redistribution routing to package bumps.
Radiated EMI Prediction in Power Converters with Power Cables based on Cable Antenna Voltage Gain Extraction
Zhedong Ma¹, Yirui Yang¹, Juntao Yao¹, Shuo Wang¹, Honggang Sheng², Liang Jia², Zhenxue Xu², Srikanth Lakshmikanthan²
¹University of Florida, USA; ²Google LLC, USA

Abstract: Radiated Electromagnetic interference (EMI) issue becomes more and more important in power electronics systems in recent years. To fully understand the generation and propagation mechanism of the radiated EMI, radiated EMI modeling and prediction techniques are very important. In this article, an active-clamp Flyback converter with long power cables is taken as an example, the radiated EMI model is developed, a step-by-step guide to predict the radiated EMI spectrum is proposed, some important issues are pointed out for EMI prediction. The predicted EMI Based on the proposed guide can match the measured EMI very well within 6dB error in the range of 30MHz – 230MHz Based on EN55032 3m class B standard.

Modeling and Analysis of Grid Tied Combined Ultracapacitor Fuel Cell for Renewable Application
Webster Adepoju¹, Indranil Bhattacharya¹, Olufunke Mary Sanyaolu²
¹Tennessee Technological University, USA; ²University of Johannesburg, South Africa

Abstract: In this manuscript, the performance of an ultracapacitor fuel cell in grid connected mode is investigated. Voltage regulation to the ultracapacitor was achieved with a three level bidirectional DC-DC converter while also achieving power flow from the grid to the ultra-capacitor via the bidirectional converter. The choice of a bidirectional three level converter for voltage regulation is Based on its inherently high efficiency, low harmonic profile and compact size. Using the model equations of the converter and grid connected inverter derived Using the switching function approach, the grid’s direct and quadrature axes modulation indices, Md and Mq, respectively were simulated in MATLAB for both lagging and leading power factors. Moreover, the values of Md and Mq were exploited in a PLECS Based simulation of the proposed model to determine the effect of power factor correction on the current and power injection to grid.

High-Frequency Modeling of a BLDC Motor for Radiated Emission Prediction
Joomin Park¹, Sungjun Park², Kyung-Hun Jung², Ick-Jae Yoon¹
¹Chungnam National University, Korea; ²Hanon System, Korea

Abstract: This paper presents a high-frequency modeling for a stator winding of a BLDC motor as a means of predicting the relative RE noise feature through simulation. Noting that the high-frequency signal flow in a three-phase electric motor can be expressed through a T-network modeling and the radiation feature can be estimated by antenna impedances, we carry out full-wave EM simulations on the stator winding. The proposed high-frequency modeling technique is used to predict the change in radiated electric field according to the motor housing structures. It is verified by the manufactured prototype and measurement that the relative change in RE value can be predicted.
Protection Issues for Power Substations from HEMP Adverse Effects
Edward B. Savage, William A. Radasky
Metatech Corporation, USA

Abstract: It is well known that modern society is very dependent on a reliable electric power system. However, that system can be compromised by electromagnetic threats. One threat is the effect of HEMP from a high altitude nuclear burst [1]. One concern is the late time part of HEMP, E3, which is briefly discussed here. The early time part, E1, is the major emphasis of this paper – specifically, adverse E1 effects on the control systems, housed in substation buildings. To address this concern, the EM (electromagnetic) vulnerability of substation electronics should be evaluated and hardening applied if necessary. The paper will enumerate and discuss various issues that affect the EM response of substations and its hardening. Two major concerns are E1 coupling to yard cables and E1 field leakage into the substation building.

The Application of NEC-4 to E1 High-Altitude Electromagnetic Pulse Coupling to Electric Power Substation Yard Cables
Johnny J. Moore, Timothy M. Minteer
Schweitzer Engineering Laboratories Inc., USA

Abstract: A thorough validation of the ability of Numerical Electromagnetics Code, 4th edition (NEC-4) to simulate the voltage induced across a termination impedance of a wire structure from a high-altitude electromagnetic pulse (HEMP) was conducted to gain confidence in the tool for future work. This involved developing a segmentation and gap scheme for an electrically small dipole bounded by the limitations of NEC-4 and ensuring that it agreed with theory. This technique was then extended to transmission line structures (comprising a signal or control wire located in the trench of an electric power substation yard) by using the dipole as the termination for the transmission line. The implementation of the termination impedance of the transmission line and grounding scheme is also discussed.

Use of IEC E1 HEMP Standards to Determine the Coupled Levels and Impacts of Induced Currents to Power Substation Control House Yard Cables
William A. Radasky
Metatech Corporation, USA

Abstract: This paper reviews the coupling of E1 HEMP fields to buried control cables that are connected to protection relays in power substation control houses. This review is performed by examining the publications of the International Electrotechnical Commission (IEC) and the work of IEC Subcommittee 77C, which deals with high power EM phenomena.

TP-TH-AM2-TC10 Power Integrity Analysis and Design – II

Systematic Analysis for Tabbed Line Design
Eleonora Palma1, Alessandro Pali2, Laura Fabbri2, Francesco de Paulis1
1University of L’Aquila, Italy; 2SECO spa, Italy

Abstract: The tabbed lines have been shown to be effective for the reduction of the far-end crosstalk (FEXT) in high speed data buses. However the amount of tabbed lines in a specific line or bus is usually left to the layout designer without having at hand clear guidelines on how to implement them. The work proposed in this abstract aims at clearly analyzing the impact of the tabbed section percentage with respect to the overall line (bus) length. The presented parametric analysis demonstrates that a FEXT minimum can be always found in the percentage of tabbed portion. The corresponding percentage is function of the specific geometry of the tabs.
Board Level Probe-on-Pin Power Delivery Network Characterization
Patt Chang¹, Y.L. Li¹, Jimmy Hsu¹, Yang Hung Cheng², Chien Hsun Chen², Hao Wei², Falconee Lee¹, Shijuan Qin¹, Kevin Liang¹, Kate Tzeng¹
¹Intel Corporation, Taiwan; ²MPI Corporation, Taiwan
Abstract: The Artificial Intelligence (AI) and High-Performance Computing (HPC) demand high power from mother board voltage regulators. It’s getting more challenging to design a robust power delivery network (PDN) to meet the voltage specifications to the processor because of the fast slew rate and large load step. Conventional power validations utilize voltage regulator testing tools (VRTTs) to mimic load transient behaviors of processors. Comparing to time domain transient results, the PDN impedance is a good frequency domain approach to ensure robust power design without applying fast load transients. This paper provides power design engineers a semi-robotic power delivery network impedance test methodology.

Power Design Validation of Two-Stage Power System
Y.L. Li¹, Falconee Lee¹, Kevin Liang¹, Kate Tzeng¹, Ming Tien¹, Donghan Wu¹, Bryant Tsai¹, Patt Chang¹, Jim Tseng¹, Shijuan Qin²
¹Intel Corporation, Taiwan; ²Intel Corporation, China
Abstract: With FIVR, Intel power system was upgraded to two-stage power system. To validate two-stage power system, a new approach is proposed. Based on tests Using the approach, 100% board MLCC capacitors removal doesn’t see any impact to a two-stage power system.

Quantitative Analysis of the "Shimada" Isolating, 1:1, Series-Series, Equal-Delay Balun
James McLean
TDK R&D Corp., USA
Abstract: The “Shimada” isolating, 1:1, series-series, equal-delay balun is analyzed Using odd/even mode transmission line analysis and is shown to behave as a current balun over a broad bandwidth. Numerical results indicate that when the electrical length of the odd mode of the constituent bifilar transmission lines is near an odd-integer multiple of 90 degrees, the general behavior of the device degrades from that of a current balun to simply that of a symmetric balun. Additionally, when the common-mode structure is lossless, a narrowband undulation in the short-circuit output currents occurs in the immediate vicinity of the same odd-integer multiples of the odd-mode quarter-wave frequency. However, this only occurs for short-circuit or very low impedance loads. Finally, we show that the widely used “Shimada” balun is equivalent to the conventional 1:1 isolating bifilar transformer with a compensating delay line added to the non-inverting output.

Comparison of EMC Chamber Debugging Techniques above 1GHz
Yibo Wang, Zhong Chen
ETS-Lindgren, USA
Abstract: Site VSWR test is specified in the CISPR 16 standards for evaluating sites above 1GHz. The CISPR Svswr method consists of a series of scalar measurements and offers no additional information on how one can debug a chamber failure. The Time Domain site VSWR method specified in ANSI C63.25.1 standard is an alternative site validation method. The TD Svswr method yields more consistent data and provides equivalent results to the CISPR Svswr method. The time domain impulse view, obtained through inverse Fourier transform of the vector response measurement in the frequency domain, can provide valuable chamber debugging information. The path length of a large reflection can be identified in the time domain. However, no information about the directions of the unwanted reflection signal can be extracted. In this study, a chamber imaging method is presented from phase coherent measurements Using a 2D planar scanner. Angular spectrum in K-space is computed from the Fourier transform of the planar scanned 2-D data. A 2-D image of chamber reflections is constructed after mapping the K coordinates to azimuth-elevation angle coordinates. The chamber image shows both the signal levels and the directions, allowing a more comprehensive reflection signal analysis and chamber debugging. In this paper, the two techniques (i.e., time domain method and chamber imaging method) are presented and compared for chamber debugging in a 3m EMC anechoic chamber.
Methodology to Validate the Radiated Immunity of Very Complex Systems by a Succession of Simple Component Radiated Immunity Tests at System Level

Nadir Fouad Bedjiah1,2, Marco Klinger1, Moncef Kadi2, Romain Rossi2
1Stellantis NV, France; 2Université de Rouen Normandie, France

Abstract: The validation of automotive autonomous and complex functions will be crucial in the coming years. The cost and duration of EMC immunity tests are constantly increasing with the number of functions to validate. In addition, the more complex are the functions, the more difficult will be their validation. Currently, the immunity validation tests for complete electrical functions or architectures at vehicle level are performed indoor on a roller-bench in a semi-anechoic chamber. These complex systems rely on several sensors such as radars, cameras, etc. To perform the immunity validation tests of these systems, one needs therefore to recreate the outdoor scenarios indoor, by stimulating the different sensors, and most of all, by synchronizing these stimulations between each other. However, synchronizing the stimulation of all the sensors in a realistic way is very challenging. Furthermore, autonomous functions will automatically disable themselves in case of incoherencies in the data and information provided by the sensors and the external communication links (e.g. Car-to-X). Therefore, the current methodology will not allow one to validate these complex autonomous functions as desired. In this paper, a new methodology to validate the radiated immunity of complex systems is investigated. The aim of this methodology is to validate automotive electrical functions independently of their level of complexity. This methodology is Based on a succession of simple component radiated immunity tests performed directly on vehicle.

TP-TH-PM1-TC9 Surrogate Modeling and Optimization

Automatic SPICE-Integrated Reinforcement Learning for Decap Optimization for EMI and Power Integrity

Jingook Kim1, Sangyeong Jeong1, Jun-Bae Kim2, Jeong Don Ihm2
1Ulsan National Institute of Science and Technology, Korea; 2Samsung Electronics Co., Ltd., Korea

Abstract: The automatic SPICE-integrated reinforcement learning (RL) is proposed for decap optimization for radiated electromagnetic interference (EMI) and power integrity. A power distribution network (PDN) structure is modeled in a circuit fashion to be solved in a SPICE solver. for EMI optimization, the branch currents for radiated EMI calculation were obtained from ac simulations. for PI optimization, the voltage fluctuations in time domain were obtained from transient simulations. Finally, it is demonstrated that a consistent RL environment integrated with SPICE solvers can be utilized in the optimization for both radiated EMI and PI.

Black-Box Behavioral DC-DC Converter IC Emission Model

S.R. Rao1, N. Ishibashi2, B. Nayak1, H. Muniganti1, N. Ambasana1, V. Sahu1, D. Gope1,3, A. Devi1
1Simyog Technology Pvt. Ltd., India; 2Panasonic Holdings Corporation, Japan; 3Indian Institute of Science, India

Abstract: Electrified, automated, connected, and shared mobility trends have led to stringent EMC requirements for in-vehicle equipment. In addition to noise countermeasure technology, it is becoming important to predict EMC risk from the early design stage. Simulation is an effective method to analyze and monitor EMI/EMC performance such that possible upstream problems can be addressed cost-effectively. A primary challenge towards such a simulation methodology is the non-availability of models for Integrated Circuits (ICs) which are the sources of noise. In this work, an operating condition-dependent behavioral model for ICs is developed Using measured data on a specially designed test-PCB followed by training a machine-learning network. This is combined with an electromagnetic simulation framework to generate system-level EMC results. The proposed model-based simulation methodology is validated with measurements for a DC-DC converter system.
Evolutionary Algorithms as a Tool for Shielding Design
Stanislav Kovar1, Iva Kavankova1, Michael Renzler2, Jan Valouch1, Tomas Kadavy1, Dominik Mair2
1Tomas Bata University in Zlín, Czechia; 2University of Innsbruck, Austria

Abstract: The paper deals with the shielding enclosure design using evolutionary algorithms without predetermined conditions. The designed shield consists of an array of elements that represent conductive or non-conductive parts. The expected output is to design a shield with sufficient balance between shielding effectiveness and transparency in systems that need an optical line of sight. The wide frequency transparent shielding design is a complex task that researchers so far mostly solved by composite polymers. The authors use a different approach using traditional conductive material and element folding technology. Element assembly is performed by an evolutionary algorithm that decides the properties of the material used and creates the optimal structure to achieve the desired results. The paper describes the design concept for planar shielding with metaheuristics and the preliminary results.

TP-WE-AM-TC1 EMC Management

Effects of the MHz Frequency Range Electromagnetic Immunity of the Swept Frequency Pulse Coupled on the kHz Frequency Range G3 Power Line Communication
Arash Nateghi1, Niek Moonen2, Martin Schaarschmidt1, Sven Fisahn1, Heyno Garbe3
1Wehrwissenschaftliches Institut für Schutztechnologien ABC-Schutz, Germany; 2University of Twente, The Netherlands; 3Leibniz University Hannover, Germany

Abstract: This contribution evaluates the vulnerability of narrowband power line communication in the kHz frequency range through the implementation of frequency swept pulse intentional electromagnetic interference (IEMI) in the MHz frequency range. For this experiment, different types of digital modulation as well as different types of transmission mode are evaluated. The data frame error rate of the transmitter and receiver are compared when a low power frequency-swept pulse IEMI is coupled to the G3 power line communication. Finally, a mitigation plan to manage the risk of intentional EMI in power line communications is recommended.

Risk-Based EMC Approach for the Ship's Semi-Enclosed Reverberant Indoor Environment to Evaluate EMI Generated by Wireless Devices
Mumpy Das, Robert Vogt-Ardatjew, Frank Leferink
University of Twente, The Netherlands

Abstract: Ships are one of the most complex semi-reverberant electromagnetic environments. To lower the cost and weight of the cabling in ships, wired devices are being replaced by wireless ones. This increment, with the presence of the multipath reflective environment, will increase the chance of electromagnetic interference. Although the electronic devices placed within satisfy various electromagnetic compatibility standards, the risk of interference still exists because of the complexity of the environment. A full risk-based electromagnetic compatibility approach can significantly help to mitigate the interference risks. In this paper, we discussed how a semi-enclosed reverberant environment increases the field strength below the deck of the ship and can cause electromagnetic interference within. We also discussed the risk-based electromagnetic compatibility approach using the Accessibility, Susceptibility, and Consequence cube to overcome electromagnetic interference risks.
Electromagnetic Interference Risk Assessment for the Use of LED Lights on Board of Ships
Nancy Omollo\(^1,2\), Jan-Kees van der Ven\(^1\), Robert Vogt-Ardatjew\(^2\), Frank Leferink\(^2,3\)
\(^1\)RH Marine, The Netherlands; \(^2\)University of Twente, The Netherlands; \(^3\)Thales Nederland B.V., The Netherlands

Abstract: The very high frequency band is a critical band that is used for safety and distress communication on board ships. Use of some commercial off the shelf equipment have been found to cause interference in this band. This paper describes the use of a risk-based approach to evaluate EMC risk due to commercial-off-the-shelf light emitting diodes in the wider band surrounding the very high frequencies, and define measures for the integration without causing disturbance. Measurements have been carried out on a sample of generic lights that are intended both for the indoor and outdoor use, to establish any likelihood of electromagnetic interference occurring. The results show some of the lights have higher emissions above the recommended limits, in which case risk-based EMC has been used to define mitigation measures for integration to achieve EMC.

TP-TH-PM1-TC4 EMI in Transportation Systems

HFSS Simulation Predicts the Radiated Emission from Complex Cable Harness Configuration
Shahid Ahmed
Ansys, Inc., USA

Abstract: We have considered a hybrid approach for a full-wave radiated emission from a complex cable harness configuration that involves a 3-D simulation with HFSS coupled with a 2-D simulation of the cable cross-sections for extracting RLGC parameters and distributing them in a 1-D transmission line model for an accurate determination of voltages and currents. Semi-empirical models are used to model the transfer impedance of braided shields. This hybrid approach greatly reduces the solve time and provides high fidelity simulations of radiated emission from cable harnesses in complex environments such as automotive and aerospace, which, otherwise would have been difficult. For real-life applications, twisted pairs, shielded, and insulated jackets can be conveniently modeled. Moreover, the design workflow is fully automated and scriptable, which significantly enhances its usefulness. A comprehensive study will be presented.

Multi-Objective Design of Filter Installed in Brush Motor by Preference Set-Based Design Accounting for Cable Length
Shohei Kan, Ryuta Nakanishi, Zhenhong Xu, Kengo Iokibe, Yoshitaka Toyota
Okayama University, Japan

Abstract: In designing automotive products, it is often required to pursue a solution which satisfies multi-objective performances with conflicting requirements simultaneously. This paper finds the cable length range as well as the design range of an EMI filter for an automotive brush motor, which satisfy required performances by applying the multi-objective satisfactory design method called Preference Set-based Design (PSD)

EMI Control for a Multi-Cell Battery
Yongjun Zhang, Chenming Zhou, Justin Srednicki
National Institute for Occupational Safety and Health, USA

Abstract: Electromagnetic emissions from multi-cell batteries were previously observed to cause electromagnetic interference (EMI) that can cause nearby electronic safety and health devices to malfunction. While shielding and filtering are the two most common EMI mitigation methods, both have pros and cons and are not applicable in all situations. In this paper, we propose an innovative approach for mitigating EMI emissions from a multi-cell battery. The new approach takes advantage of the coherent nature of the currents in battery cells, and their structural symmetry found in certain battery packs, and then rearranges them into magnetic mutual cancellation loops so that the magnetic fields produced from the battery cells are cancelling each other. Using an electronic device typically used in underground coal mines as an example, the proposed approach can effectively reduce the EMI from the device by 25dB by simply rearranging the position of the battery cells.
Development and Evaluation of a CNN-LSTM Architecture based Neural Network for Time Optimization during EMI Measurements
Hussam Elias¹, Ninovic Perez², Holger Hirsch¹
¹Universitat Duisburg-Essen, Germany; ²Cetecom GmbH, Germany

Abstract: In this paper, an approach is proposed to find the worst-case positions during the final measurement phase on critical frequencies in electromagnetic interference (EMI) measurements according to 47 CFR § 15.209 by using a developed measurement software and deep neural networks (DNN). Firstly, because of its advantage of incomplete connection, relatively simple model structure and strong data features extraction, a dimensional convolution neural network (1D CNN) was present to predict the positions that meet the maximum radiation emission level. Secondly, a hybrid deep learning neural network framework, that combines CNN with long short term memory (LSTM) was adopted to forecast the worst-case of the high variance emission levels. The DNNs were trained using real EMI measurements for different equipment under test (EUT) in a Semi Anechoic Chamber (SAC) by Cetecom GmbH in Essen, Germany. By predicting the position azimuth of the turntable and the height of the antenna, the required time to carry out the final measurement phase is effectively reduced.

Measurement of Current Waveform Due to Different Load of ESD Gun, TLP-HMM, and CR-HMM
Masahiro Yoshida¹, Yusuke Yano¹, Takeshi Ishida², Jianqing Wang¹
¹Nagoya Institute of Technology, Japan; ²Noise Laboratory Co., Ltd., Japan

Abstract: The discharge current waveform of ESD gun, TLP- HMM (Transmission line pulse - human metal model), and CR- HMM (Capacitance resistance - human metal model) is calibrated with a 2 Ω load impedance. However, the load impedance structure of TLP- and CR-HMM is different from that of ESD gun. In this study, to investigate their influences, we measured their discharge current waveforms for two types of load impedances, 2 Ω and 50 Ω, with the same load impedance structure as that of the ESD gun. The results show that not only the load impedance value but also the load impedance structure affects the discharge current waveform.

Justification of Balanced VHF-LISN Termination
Kunihiro Osabe¹, Nobuo Kuwabara², Hidenori Muramatsu¹
¹VCCI Council, Japan; ²Kyushu Institute of Technology, Japan

Abstract: Mains cable termination of equipment for radiated emission testing is currently under discussion in CISPR/A-I Joint Ad-hoc Group-6 (JAHG-6), with both balanced and unbalanced Very High Frequency Line Impedance Stabilization Networks (VHF-LISN) being proposed for standardization. Based on the results of Round Robin Testing (RRT), this paper discusses the justification for using balanced VHF-LISN termination of the EUT power cable in radiated emission testing. The paper concludes that balanced VHF-LISN is suitable for current radiated emission testing of the enclosure port of Equipment under Test (EUT), and where consideration of emission from an unbalanced power supply network is necessary, an unbalanced VHF-LISN is effective.

Automotive Transients Measurement Methodology Assessment for High-Speed Communication Buses
Patrick DeRoy¹, Mohit Gopalraj¹, Sachinkumar Goudnoor¹, Jay O'Halloran¹, Abhishek Ramanujan²
¹Analog Devices Inc., USA; ²Analog Devices International, Ireland

Abstract: With the emergence of new high-speed Automotive networking systems using unshielded twisted pair (UTP) cables, the challenges around meeting stringent Automotive requirements have become tougher than ever. Robustness to Automotive transient pulses according to ISO 7637-2 [1], ISO 7637-3 [2] has been a key customer requirement on any networking system physical layer. Several customer specifications also mandate special fixtures to couple the pulses to the communication lines, either the capacitive coupling clamp (CCC) or the 3-slot fixture [3]. This paper studies and compares the effect of these pulses and/or fixtures to help understand the severity on UTP differential data lines.
RF-Induced Heating for Cardiac Rhythm Management (CRM) in Patients with Different Postures
Xiaolin Yang, Ran Guo, Jianfeng Zheng, Ji Chen
University of Houston, USA

Abstract: This paper investigates the impacts of posture on the radio frequency (RF)-induced heating for patients with CRM devices exposed to a 1.5T MRI RF field. Three different arm postures are developed using the poseable human body model. The RF-induced heating of the CRM system, in terms of temperature rise, is calculated based on the transfer function approach. The statistical analysis of temperature increment, including the average value, standard deviation, and 95th percentile, is performed for four different postures. Although the relative differences of these statistical results between the arm postures and original posture are less than 5%, for one specified configuration, the maximum variation on temperature increment can be 66%. The results indicate that the arm postures studied in this paper slight effect on the RF-induced heating of the CRM system.

RF-Induced Heating Evaluation for Passive Device in Tissue-Reduced Virtual Family Models at 1.5 T
Meiqi Xia, Ran Guo, Jianfeng Zheng, Ji Chen
University of Houston, USA

Abstract: Tissue-reduced virtual family models are developed for the RF-induced heating assessment of passive implantable medical devices. The models are developed based on the Gaussian mixture model. The RF-induced heating of four representative passive device systems is evaluated inside the original human models, tissue-reduced human models, and the ASTM phantom at three landmark positions under a 1.5 T MRI system. From the results of these simulations, it is observed that the RF-induced heating from the tissue-reduced virtual family models is highly correlated to that obtained from the original human body models. It demonstrates the feasibility of using tissue-reduced models for the RF-induced heating testing of implantable medical devices.

A Plane-Wave Superposition Method for Improved Spatial Correlation Accuracy in Simulated Reverberation Chambers
Valerio De Santis¹, Antonio Di Francesco¹, Giorgi Bit-Babik², Antonio Faraone²
¹University of L’Aquila, Italy; ²Motorola Solutions Inc., USA

Abstract: In this study, the random electromagnetic (EM) field environment within an ideal reverberation chamber is synthesized using a superposition of plane-waves (PWs). Randomness in the EM environment is achieved by assigning randomly generated complex amplitudes associated with each PW propagating in fixed directions determined by an efficient spiraling sampling scheme over a spherical surface. Comparisons with the analytical statistics show that the proposed method yields a better prediction of the spatial EM field distribution with respect to currently used numerical techniques while requiring far less computation time.

Machine Learning-Based Coupling Modeling and Prediction for Multiple Transmission Lines
Xiaolin Wu, Junling Ji
Chongqing University of Posts and Telecommunications, China

Abstract: The existence of electromagnetic fields in ambient space will lead to coupling effects on transmission lines. Different from conventional electromagnetics computation method, in this work, a multi-wire coupling model is constructed, and a shallow neural network algorithm with only two hidden layers is adopted to realize the modeling and analysis of multi-wire coupling effects. With this trained model, it is convenient to rapidly predict multi-wire coupling effect on the field. The results show that the training time of the algorithm on the training set, which contains 7030 sets of data, is only 5 minutes, and the prediction error, measured in root mean squared error (RMSE), on the test set is less than 6dB. Moreover, the single prediction time is only 0.3 seconds. These results significantly improve the efficiency of multi-wire coupling analysis and prediction.
Determination of Electromagnetic Noise from a Power Supply Substation of Railway Traction Systems
Petre-Marian Nicolae, Ileana-Diana Nicolae, Iurie Nuca, Marian-Ștefan Nicolae
University of Craiova, Romania

Abstract: This paper deals with 2 methods for the evaluation of the electromagnetic noise that occurs when supplying electric trains from substations. The waveforms corresponding to the supply voltage from the substation and the current absorbed through the supply line by electric trains in different operational contexts are analyzed. Aspects of electromagnetic interference and electromagnetic noise in railway traction systems are discussed. Specialized standards that address the electromagnetic noise and effects produced by the electromagnetic interference in the railway electrical network are briefly presented. Two methods were used for the evaluation of the electromagnetic noise: the method of mean signal and the method relying on the decomposition/recomposition of individual periods Using Wavelet Packets. 7 real datasets of 50 consecutive periods are analyzed with both methods, computing signal to noise ratios and other quantities (extreme and mean values and percentage relative differences between results provided by different methods). Conclusions are drawn considering the analysis results.

Recommended Wavelet based Practices for the Estimation of Electromagnetic Noise in Different Operational Contexts
Ileana-Diana Nicolae, Dusan Kostic, Petre-Marian Nicolae, Marian-Ștefan Nicolae
University of Craiova, Romania

Abstract: Signals acquired from an industrial environment with many sources of electromagnetic interferences may be polluted by white noise. The decompositions Based on the Stationary and Discrete Wavelet Transformations, respectively the Wavelet Packet Decomposition can be used to estimate the power of noise affecting a certain waveform. Original linear combinations of powers of vectors of details hosted by the nodes of the unbalanced trees generated by the Stationary and Discrete Wavelet Decompositions were conceived in order to evaluate the power of noise which is used afterward by thrashing trees. Tests were made on currents and voltages acquired in different operational contexts. „Smoothed” versions of denoised signals, obtained in an original way with Wavelet Packet Trees were used as reference. The paper is meant to provide a usefull tool for deciding which is the best thrashing practice considering criteria like: minimum relative percentage difference (estimated vs reference) between the powers of noise, maximum deviation, mean square error and runtime. Two wavelet mothers (symlet with filter of 8 components and Daubechies with filter of 28 components) were studied for signals with 512 components per period and trees with 7 levels.

Numerical Study on Explosion Characteristics of Wind Turbine Blade under Lightning Induced Arc
Wanshui Yu¹, Qingmin Li¹, Zixin Guo², Hanwen Ren¹, Wah Hoon Siew³
¹North China Electric Power University, China; ²China Electric Power Research Institute, China; ³University of Strathclyde, United Kingdom

Abstract: For enhancing the lightning protection abilities of wind turbine blades, there is the need to study the mechanical explosion characteristics when the blades suffer from lightning induced arc intrusion. In this paper, a magnetohydrodynamic (MHD) model of lightning induced arc intrusion into the blade was developed, and the airflow and gas pressure distribution were calculated accordingly. The simulation results show that the huge pressure generated at the trailing edge of the blade should be the main cause of the trailing edge cracking. The research presented in this paper provides a theoretical basis for improving the structural design of the blade from the lightning protection perspective.
Practical Evaluation of Electromagnetic Time Reversal to Locate Partial Discharges on Power Networks in the Presence of Noise
A. Ragusa, H. Sasse, A. Duffy
De Montfort University, United Kingdom

Abstract: The paper proposes an analysis of the performance of a new method to localize Partial Discharges (PDs) on power cables under noisy conditions. The new method is based on the use of the Electromagnetic Time Reversal (EMTR) theory and the Transmission Line Matrix (TLM) numerical method. The investigations have been carried out in a voltage reduced experimental set up, using a RG223 coaxial cable. The effectiveness of the EMTR-based method has been evaluated with different noise levels injected into the cable in order to determine how the method works under noisy conditions. The experimental results have shown that the EMTR method is able to localize PD source with an error that is always less than 1%. Averaging is used over several PD signal recordings at the observation point when the reflected signal is hidden by the noise.

TP-TH-PM-TC4 EMI at the IC/Package Level

Electrically Conductive Silicones as Elastomeric Solutions for EMI Applications
Julia Sunderland, Joe Sootsman
The Dow Chemical Company, USA

Abstract: Electrically conductive silicones are advanced elastomeric solutions for shielding, grounding, and bonding of electronic components such as automotive, communication and consumer electronics. The tunability of the electrical and mechanical performance of these silicone composites offers unique solutions to demanding electronic applications. Dispensable silicones allow for application onto challenging module geometries and greater module design freedom. A novel heat curable adhesive presented herein was analyzed and evaluated for electrical, mechanical, and thermal aging stability performance.

Improve the Shielding Effectiveness of a BGA Package by Using VSS Ring Structure
Tao Wang
Missouri University of Science and Technology, USA

Abstract: I/O pin counts have been able to increase significantly thanks to ball grid array (BGA) packages. This I/O pin counts increase brings challenges to breaking out signals and ensuring sufficient shielding effectiveness (SE). Shielding can is often used to enhance the SE of the package but in many devices, conformal sputtering shielding is a better option. This paper presents a method to improve the SE by adding a VSS ground ring structure to the sputtering coat. The simulated results show the proposed structure provides 20 dB more SE compare to the structure without a VSS ground ring.

System and Package-Level EMI Shielding Effectiveness Analysis for AR/VR Devices
Hanqiao Zhang, Sam Sarmast, Soumyadipta Basu, Patrick Codd
Meta Platforms Inc., USA

Abstract: Conformal metal sputtering on package mold compound provides an alternative to meet package and system electromagnetic interference (EMI) and RF interference (RFI) requirements without sacrificing product form factors. However, available coating thickness and material options on the outsourced semiconductor assembly and test (OSTA) market is limited and inadequate. An EM-circuit co-simulation method was developed for conformal shielding effectiveness (SE) analysis for augmented and virtual reality (AR/VR) applications. SE results of various coating thickness and materials are presented to show the custom needs for thicker Cu coating and high permeability coating materials such as Ni.
Metallic/Magnetic Multilayer for Wide-Band Direct-on-Chip EMI Shielding
A. Kikitsu¹, Y. Kurosaki¹, S. Shirotori¹, A. Fujita², H. Nishigaki², S. Matsunaka²
¹Toshiba Corporation, Japan; ²Shibaura Mechatronics Corp., Japan

Abstract: Metallic/ magnetic multilayer systems using a base unit of [Cu(100 nm)/NiFeCuMo(100 nm)]₁₀ were investigated as the EMI shielding layer for the sub-100 MHz range. Addition of soft magnetic multilayers was found to exhibit a shielding effect at less than 20 MHz, which may have been originated from domain wall resonance in the base unit. The magneto-static interaction seems to induce magnetic resonances in the other units.